scala.math.Ordering.String

implicit object String extends StringOrdering

Type Members

class Ops extends AnyRef

This inner class defines comparison operators available for T .

  • Definition Classes
    • Ordering

Value Members From java.util.Comparator

def reversed(): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

def thenComparing(arg0: Comparator[_ >: String]): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

def thenComparingDouble(arg0: ToDoubleFunction[_ >: String]): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

def thenComparingInt(arg0: ToIntFunction[_ >: String]): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

def thenComparingLong(arg0: ToLongFunction[_ >: String]): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

def thenComparing[U <: Comparable[_ >: U]](arg0: java.util.function.Function[_ >: String, _ <: U]): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

def thenComparing[U](arg0: java.util.function.Function[_ >: String, _ <: U], arg1: Comparator[_ >: U]): Comparator[String]

  • Definition Classes
    • Comparator

(defined at java.util.Comparator)

Value Members From scala.math.Ordering

def equiv(x: String, y: String): Boolean

Return true if x == y in the ordering.

  • Definition Classes
    • Ordering → PartialOrdering → Equiv

(defined at scala.math.Ordering)

def gt(x: String, y: String): Boolean

Return true if x > y in the ordering.

  • Definition Classes
    • Ordering → PartialOrdering

(defined at scala.math.Ordering)

def gteq(x: String, y: String): Boolean

Return true if x >= y in the ordering.

  • Definition Classes
    • Ordering → PartialOrdering

(defined at scala.math.Ordering)

def lt(x: String, y: String): Boolean

Return true if x < y in the ordering.

  • Definition Classes
    • Ordering → PartialOrdering

(defined at scala.math.Ordering)

def lteq(x: String, y: String): Boolean

Return true if x <= y in the ordering.

  • Definition Classes
    • Ordering → PartialOrdering

(defined at scala.math.Ordering)

def max(x: String, y: String): String

Return x if x >= y , otherwise y .

  • Definition Classes
    • Ordering

(defined at scala.math.Ordering)

def min(x: String, y: String): String

Return x if x <= y , otherwise y .

  • Definition Classes
    • Ordering

(defined at scala.math.Ordering)

implicit def mkOrderingOps(lhs: String): Ops

This implicit method augments T with the comparison operators defined in scala.math.Ordering.Ops .

  • Definition Classes
    • Ordering

(defined at scala.math.Ordering)

def on[U](f: (U) ⇒ String): Ordering[U]

Given f, a function from U into T, creates an Ordering[U] whose compare function is equivalent to:

def compare(x:U, y:U) = Ordering[T].compare(f(x), f(y))
  • Definition Classes
    • Ordering

(defined at scala.math.Ordering)

def reverse: Ordering[String]

Return the opposite ordering of this one.

  • Definition Classes
    • Ordering → PartialOrdering

(defined at scala.math.Ordering)

def tryCompare(x: String, y: String): Some[Int]

Returns whether a comparison between x and y is defined, and if so the result of compare(x, y) .

  • Definition Classes
    • Ordering → PartialOrdering

(defined at scala.math.Ordering)

Value Members From scala.math.Ordering.StringOrdering

def compare(x: String, y: String): Int

Returns an integer whose sign communicates how x compares to y.

The result sign has the following meaning:

  • negative if x < y
  • positive if x > y
  • zero otherwise (if x == y)

  • Definition Classes
    • StringOrdering → Ordering → Comparator (defined at scala.math.Ordering.StringOrdering)

Full Source:

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package math

import java.util.Comparator
import scala.language.{implicitConversions, higherKinds}

/** Ordering is a trait whose instances each represent a strategy for sorting
  * instances of a type.
  *
  * Ordering's companion object defines many implicit objects to deal with
  * subtypes of AnyVal (e.g. Int, Double), String, and others.
  *
  * To sort instances by one or more member variables, you can take advantage
  * of these built-in orderings using Ordering.by and Ordering.on:
  *
  * {{{
  * import scala.util.Sorting
  * val pairs = Array(("a", 5, 2), ("c", 3, 1), ("b", 1, 3))
  *
  * // sort by 2nd element
  * Sorting.quickSort(pairs)(Ordering.by[(String, Int, Int), Int](_._2))
  *
  * // sort by the 3rd element, then 1st
  * Sorting.quickSort(pairs)(Ordering[(Int, String)].on(x => (x._3, x._1)))
  * }}}
  *
  * An Ordering[T] is implemented by specifying compare(a:T, b:T), which
  * decides how to order two instances a and b. Instances of Ordering[T] can be
  * used by things like scala.util.Sorting to sort collections like Array[T].
  *
  * For example:
  *
  * {{{
  * import scala.util.Sorting
  *
  * case class Person(name:String, age:Int)
  * val people = Array(Person("bob", 30), Person("ann", 32), Person("carl", 19))
  *
  * // sort by age
  * object AgeOrdering extends Ordering[Person] {
  *   def compare(a:Person, b:Person) = a.age compare b.age
  * }
  * Sorting.quickSort(people)(AgeOrdering)
  * }}}
  *
  * This trait and scala.math.Ordered both provide this same functionality, but
  * in different ways. A type T can be given a single way to order itself by
  * extending Ordered. Using Ordering, this same type may be sorted in many
  * other ways. Ordered and Ordering both provide implicits allowing them to be
  * used interchangeably.
  *
  * You can import scala.math.Ordering.Implicits to gain access to other
  * implicit orderings.
  *
  * @author Geoffrey Washburn
  * @version 0.9.5, 2008-04-15
  * @since 2.7
  * @see [[scala.math.Ordered]], [[scala.util.Sorting]]
  */
@annotation.implicitNotFound(msg = "No implicit Ordering defined for ${T}.")
trait Ordering[T] extends Comparator[T] with PartialOrdering[T] with Serializable {
  outer =>

  /** Returns whether a comparison between `x` and `y` is defined, and if so
    * the result of `compare(x, y)`.
    */
  def tryCompare(x: T, y: T) = Some(compare(x, y))

 /** Returns an integer whose sign communicates how x compares to y.
   *
   * The result sign has the following meaning:
   *
   *  - negative if x < y
   *  - positive if x > y
   *  - zero otherwise (if x == y)
   */
  def compare(x: T, y: T): Int

  /** Return true if `x` <= `y` in the ordering. */
  override def lteq(x: T, y: T): Boolean = compare(x, y) <= 0

  /** Return true if `x` >= `y` in the ordering. */
  override def gteq(x: T, y: T): Boolean = compare(x, y) >= 0

  /** Return true if `x` < `y` in the ordering. */
  override def lt(x: T, y: T): Boolean = compare(x, y) < 0

  /** Return true if `x` > `y` in the ordering. */
  override def gt(x: T, y: T): Boolean = compare(x, y) > 0

  /** Return true if `x` == `y` in the ordering. */
  override def equiv(x: T, y: T): Boolean = compare(x, y) == 0

  /** Return `x` if `x` >= `y`, otherwise `y`. */
  def max(x: T, y: T): T = if (gteq(x, y)) x else y

  /** Return `x` if `x` <= `y`, otherwise `y`. */
  def min(x: T, y: T): T = if (lteq(x, y)) x else y

  /** Return the opposite ordering of this one. */
  override def reverse: Ordering[T] = new Ordering[T] {
    override def reverse = outer
    def compare(x: T, y: T) = outer.compare(y, x)
  }

  /** Given f, a function from U into T, creates an Ordering[U] whose compare
    * function is equivalent to:
    *
    * {{{
    * def compare(x:U, y:U) = Ordering[T].compare(f(x), f(y))
    * }}}
    */
  def on[U](f: U => T): Ordering[U] = new Ordering[U] {
    def compare(x: U, y: U) = outer.compare(f(x), f(y))
  }

  /** This inner class defines comparison operators available for `T`. */
  class Ops(lhs: T) {
    def <(rhs: T) = lt(lhs, rhs)
    def <=(rhs: T) = lteq(lhs, rhs)
    def >(rhs: T) = gt(lhs, rhs)
    def >=(rhs: T) = gteq(lhs, rhs)
    def equiv(rhs: T) = Ordering.this.equiv(lhs, rhs)
    def max(rhs: T): T = Ordering.this.max(lhs, rhs)
    def min(rhs: T): T = Ordering.this.min(lhs, rhs)
  }

  /** This implicit method augments `T` with the comparison operators defined
    * in `scala.math.Ordering.Ops`.
    */
  implicit def mkOrderingOps(lhs: T): Ops = new Ops(lhs)
}

trait LowPriorityOrderingImplicits {
  /** This would conflict with all the nice implicit Orderings
   *  available, but thanks to the magic of prioritized implicits
   *  via subclassing we can make `Ordered[A] => Ordering[A]` only
   *  turn up if nothing else works.  Since `Ordered[A]` extends
   *  `Comparable[A]` anyway, we can throw in some Java interop too.
   */
  implicit def ordered[A <% Comparable[A]]: Ordering[A] = new Ordering[A] {
    def compare(x: A, y: A): Int = x compareTo y
  }
  implicit def comparatorToOrdering[A](implicit cmp: Comparator[A]): Ordering[A] = new Ordering[A] {
    def compare(x: A, y: A) = cmp.compare(x, y)
  }
}

/** This is the companion object for the [[scala.math.Ordering]] trait.
  *
  * It contains many implicit orderings as well as well as methods to construct
  * new orderings.
  */
object Ordering extends LowPriorityOrderingImplicits {
  def apply[T](implicit ord: Ordering[T]) = ord

  trait ExtraImplicits {
    /** Not in the standard scope due to the potential for divergence:
      * For instance `implicitly[Ordering[Any]]` diverges in its presence.
      */
    implicit def seqDerivedOrdering[CC[X] <: scala.collection.Seq[X], T](implicit ord: Ordering[T]): Ordering[CC[T]] =
      new Ordering[CC[T]] {
        def compare(x: CC[T], y: CC[T]): Int = {
          val xe = x.iterator
          val ye = y.iterator

          while (xe.hasNext && ye.hasNext) {
            val res = ord.compare(xe.next(), ye.next())
            if (res != 0) return res
          }

          Ordering.Boolean.compare(xe.hasNext, ye.hasNext)
        }
      }

    /** This implicit creates a conversion from any value for which an
      * implicit `Ordering` exists to the class which creates infix operations.
      * With it imported, you can write methods as follows:
      *
      * {{{
      * def lessThan[T: Ordering](x: T, y: T) = x < y
      * }}}
      */
    implicit def infixOrderingOps[T](x: T)(implicit ord: Ordering[T]): Ordering[T]#Ops = new ord.Ops(x)
  }

  /** An object containing implicits which are not in the default scope. */
  object Implicits extends ExtraImplicits { }

  /** Construct an Ordering[T] given a function `lt`. */
  def fromLessThan[T](cmp: (T, T) => Boolean): Ordering[T] = new Ordering[T] {
    def compare(x: T, y: T) = if (cmp(x, y)) -1 else if (cmp(y, x)) 1 else 0
    // overrides to avoid multiple comparisons
    override def lt(x: T, y: T): Boolean = cmp(x, y)
    override def gt(x: T, y: T): Boolean = cmp(y, x)
    override def gteq(x: T, y: T): Boolean = !cmp(x, y)
    override def lteq(x: T, y: T): Boolean = !cmp(y, x)
  }

  /** Given f, a function from T into S, creates an Ordering[T] whose compare
    * function is equivalent to:
    *
    * {{{
    * def compare(x:T, y:T) = Ordering[S].compare(f(x), f(y))
    * }}}
    *
    * This function is an analogue to Ordering.on where the Ordering[S]
    * parameter is passed implicitly.
    */
  def by[T, S](f: T => S)(implicit ord: Ordering[S]): Ordering[T] =
    fromLessThan((x, y) => ord.lt(f(x), f(y)))

  trait UnitOrdering extends Ordering[Unit] {
    def compare(x: Unit, y: Unit) = 0
  }
  implicit object Unit extends UnitOrdering

  trait BooleanOrdering extends Ordering[Boolean] {
    def compare(x: Boolean, y: Boolean) = (x, y) match {
      case (false, true) => -1
      case (true, false) => 1
      case _ => 0
    }
  }
  implicit object Boolean extends BooleanOrdering

  trait ByteOrdering extends Ordering[Byte] {
    def compare(x: Byte, y: Byte) = x.toInt - y.toInt
  }
  implicit object Byte extends ByteOrdering

  trait CharOrdering extends Ordering[Char] {
    def compare(x: Char, y: Char) = x.toInt - y.toInt
  }
  implicit object Char extends CharOrdering

  trait ShortOrdering extends Ordering[Short] {
    def compare(x: Short, y: Short) = x.toInt - y.toInt
  }
  implicit object Short extends ShortOrdering

  trait IntOrdering extends Ordering[Int] {
    def compare(x: Int, y: Int) =
      if (x < y) -1
      else if (x == y) 0
      else 1
  }
  implicit object Int extends IntOrdering

  trait LongOrdering extends Ordering[Long] {
    def compare(x: Long, y: Long) =
      if (x < y) -1
      else if (x == y) 0
      else 1
  }
  implicit object Long extends LongOrdering

  trait FloatOrdering extends Ordering[Float] {
    outer =>

    def compare(x: Float, y: Float) = java.lang.Float.compare(x, y)

    override def lteq(x: Float, y: Float): Boolean = x <= y
    override def gteq(x: Float, y: Float): Boolean = x >= y
    override def lt(x: Float, y: Float): Boolean = x < y
    override def gt(x: Float, y: Float): Boolean = x > y
    override def equiv(x: Float, y: Float): Boolean = x == y
    override def max(x: Float, y: Float): Float = math.max(x, y)
    override def min(x: Float, y: Float): Float = math.min(x, y)

    override def reverse: Ordering[Float] = new FloatOrdering {
      override def reverse = outer
      override def compare(x: Float, y: Float) = outer.compare(y, x)

      override def lteq(x: Float, y: Float): Boolean = outer.lteq(y, x)
      override def gteq(x: Float, y: Float): Boolean = outer.gteq(y, x)
      override def lt(x: Float, y: Float): Boolean = outer.lt(y, x)
      override def gt(x: Float, y: Float): Boolean = outer.gt(y, x)
      override def min(x: Float, y: Float): Float = outer.max(x, y)
      override def max(x: Float, y: Float): Float = outer.min(x, y)

    }
  }
  implicit object Float extends FloatOrdering

  trait DoubleOrdering extends Ordering[Double] {
    outer =>

    def compare(x: Double, y: Double) = java.lang.Double.compare(x, y)

    override def lteq(x: Double, y: Double): Boolean = x <= y
    override def gteq(x: Double, y: Double): Boolean = x >= y
    override def lt(x: Double, y: Double): Boolean = x < y
    override def gt(x: Double, y: Double): Boolean = x > y
    override def equiv(x: Double, y: Double): Boolean = x == y
    override def max(x: Double, y: Double): Double = math.max(x, y)
    override def min(x: Double, y: Double): Double = math.min(x, y)

    override def reverse: Ordering[Double] = new DoubleOrdering {
      override def reverse = outer
      override def compare(x: Double, y: Double) = outer.compare(y, x)

      override def lteq(x: Double, y: Double): Boolean = outer.lteq(y, x)
      override def gteq(x: Double, y: Double): Boolean = outer.gteq(y, x)
      override def lt(x: Double, y: Double): Boolean = outer.lt(y, x)
      override def gt(x: Double, y: Double): Boolean = outer.gt(y, x)
      override def min(x: Double, y: Double): Double = outer.max(x, y)
      override def max(x: Double, y: Double): Double = outer.min(x, y)
    }
  }
  implicit object Double extends DoubleOrdering

  trait BigIntOrdering extends Ordering[BigInt] {
    def compare(x: BigInt, y: BigInt) = x.compare(y)
  }
  implicit object BigInt extends BigIntOrdering

  trait BigDecimalOrdering extends Ordering[BigDecimal] {
    def compare(x: BigDecimal, y: BigDecimal) = x.compare(y)
  }
  implicit object BigDecimal extends BigDecimalOrdering

  trait StringOrdering extends Ordering[String] {
    def compare(x: String, y: String) = x.compareTo(y)
  }
  implicit object String extends StringOrdering

  trait OptionOrdering[T] extends Ordering[Option[T]] {
    def optionOrdering: Ordering[T]
    def compare(x: Option[T], y: Option[T]) = (x, y) match {
      case (None, None)       => 0
      case (None, _)          => -1
      case (_, None)          => 1
      case (Some(x), Some(y)) => optionOrdering.compare(x, y)
    }
  }
  implicit def Option[T](implicit ord: Ordering[T]): Ordering[Option[T]] =
    new OptionOrdering[T] { val optionOrdering = ord }

  implicit def Iterable[T](implicit ord: Ordering[T]): Ordering[Iterable[T]] =
    new Ordering[Iterable[T]] {
      def compare(x: Iterable[T], y: Iterable[T]): Int = {
        val xe = x.iterator
        val ye = y.iterator

        while (xe.hasNext && ye.hasNext) {
          val res = ord.compare(xe.next(), ye.next())
          if (res != 0) return res
        }

        Boolean.compare(xe.hasNext, ye.hasNext)
      }
    }

  implicit def Tuple2[T1, T2](implicit ord1: Ordering[T1], ord2: Ordering[T2]): Ordering[(T1, T2)] =
    new Ordering[(T1, T2)]{
      def compare(x: (T1, T2), y: (T1, T2)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        0
      }
    }

  implicit def Tuple3[T1, T2, T3](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3]) : Ordering[(T1, T2, T3)] =
    new Ordering[(T1, T2, T3)]{
      def compare(x: (T1, T2, T3), y: (T1, T2, T3)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        0
      }
    }

  implicit def Tuple4[T1, T2, T3, T4](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3], ord4: Ordering[T4]) : Ordering[(T1, T2, T3, T4)] =
    new Ordering[(T1, T2, T3, T4)]{
      def compare(x: (T1, T2, T3, T4), y: (T1, T2, T3, T4)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        val compare4 = ord4.compare(x._4, y._4)
        if (compare4 != 0) return compare4
        0
      }
    }

  implicit def Tuple5[T1, T2, T3, T4, T5](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3], ord4: Ordering[T4], ord5: Ordering[T5]): Ordering[(T1, T2, T3, T4, T5)] =
    new Ordering[(T1, T2, T3, T4, T5)]{
      def compare(x: (T1, T2, T3, T4, T5), y: Tuple5[T1, T2, T3, T4, T5]): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        val compare4 = ord4.compare(x._4, y._4)
        if (compare4 != 0) return compare4
        val compare5 = ord5.compare(x._5, y._5)
        if (compare5 != 0) return compare5
        0
      }
    }

  implicit def Tuple6[T1, T2, T3, T4, T5, T6](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3], ord4: Ordering[T4], ord5: Ordering[T5], ord6: Ordering[T6]): Ordering[(T1, T2, T3, T4, T5, T6)] =
    new Ordering[(T1, T2, T3, T4, T5, T6)]{
      def compare(x: (T1, T2, T3, T4, T5, T6), y: (T1, T2, T3, T4, T5, T6)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        val compare4 = ord4.compare(x._4, y._4)
        if (compare4 != 0) return compare4
        val compare5 = ord5.compare(x._5, y._5)
        if (compare5 != 0) return compare5
        val compare6 = ord6.compare(x._6, y._6)
        if (compare6 != 0) return compare6
        0
      }
    }

  implicit def Tuple7[T1, T2, T3, T4, T5, T6, T7](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3], ord4: Ordering[T4], ord5: Ordering[T5], ord6: Ordering[T6], ord7: Ordering[T7]): Ordering[(T1, T2, T3, T4, T5, T6, T7)] =
    new Ordering[(T1, T2, T3, T4, T5, T6, T7)]{
      def compare(x: (T1, T2, T3, T4, T5, T6, T7), y: (T1, T2, T3, T4, T5, T6, T7)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        val compare4 = ord4.compare(x._4, y._4)
        if (compare4 != 0) return compare4
        val compare5 = ord5.compare(x._5, y._5)
        if (compare5 != 0) return compare5
        val compare6 = ord6.compare(x._6, y._6)
        if (compare6 != 0) return compare6
        val compare7 = ord7.compare(x._7, y._7)
        if (compare7 != 0) return compare7
        0
      }
    }

  implicit def Tuple8[T1, T2, T3, T4, T5, T6, T7, T8](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3], ord4: Ordering[T4], ord5: Ordering[T5], ord6: Ordering[T6], ord7: Ordering[T7], ord8: Ordering[T8]): Ordering[(T1, T2, T3, T4, T5, T6, T7, T8)] =
    new Ordering[(T1, T2, T3, T4, T5, T6, T7, T8)]{
      def compare(x: (T1, T2, T3, T4, T5, T6, T7, T8), y: (T1, T2, T3, T4, T5, T6, T7, T8)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        val compare4 = ord4.compare(x._4, y._4)
        if (compare4 != 0) return compare4
        val compare5 = ord5.compare(x._5, y._5)
        if (compare5 != 0) return compare5
        val compare6 = ord6.compare(x._6, y._6)
        if (compare6 != 0) return compare6
        val compare7 = ord7.compare(x._7, y._7)
        if (compare7 != 0) return compare7
        val compare8 = ord8.compare(x._8, y._8)
        if (compare8 != 0) return compare8
        0
      }
    }

  implicit def Tuple9[T1, T2, T3, T4, T5, T6, T7, T8, T9](implicit ord1: Ordering[T1], ord2: Ordering[T2], ord3: Ordering[T3], ord4: Ordering[T4], ord5: Ordering[T5], ord6: Ordering[T6], ord7: Ordering[T7], ord8 : Ordering[T8], ord9: Ordering[T9]): Ordering[(T1, T2, T3, T4, T5, T6, T7, T8, T9)] =
    new Ordering[(T1, T2, T3, T4, T5, T6, T7, T8, T9)]{
      def compare(x: (T1, T2, T3, T4, T5, T6, T7, T8, T9), y: (T1, T2, T3, T4, T5, T6, T7, T8, T9)): Int = {
        val compare1 = ord1.compare(x._1, y._1)
        if (compare1 != 0) return compare1
        val compare2 = ord2.compare(x._2, y._2)
        if (compare2 != 0) return compare2
        val compare3 = ord3.compare(x._3, y._3)
        if (compare3 != 0) return compare3
        val compare4 = ord4.compare(x._4, y._4)
        if (compare4 != 0) return compare4
        val compare5 = ord5.compare(x._5, y._5)
        if (compare5 != 0) return compare5
        val compare6 = ord6.compare(x._6, y._6)
        if (compare6 != 0) return compare6
        val compare7 = ord7.compare(x._7, y._7)
        if (compare7 != 0) return compare7
        val compare8 = ord8.compare(x._8, y._8)
        if (compare8 != 0) return compare8
        val compare9 = ord9.compare(x._9, y._9)
        if (compare9 != 0) return compare9
        0
      }
    }

}