scala.math.Ordered

trait Ordered[A] extends Comparable[A]

A trait for data that have a single, natural ordering. See scala.math.Ordering before using this trait for more information about whether to use scala.math.Ordering instead.

Classes that implement this trait can be sorted with scala.util.Sorting and can be compared with standard comparison operators (e.g. > and <).

Ordered should be used for data with a single, natural ordering (like integers) while Ordering allows for multiple ordering implementations. An Ordering instance will be implicitly created if necessary.

scala.math.Ordering is an alternative to this trait that allows multiple orderings to be defined for the same type.

scala.math.PartiallyOrdered is an alternative to this trait for partially ordered data.

For example, create a simple class that implements Ordered and then sort it with scala.util.Sorting :

case class OrderedClass(n:Int) extends Ordered[OrderedClass] {
	def compare(that: OrderedClass) =  this.n - that.n
}

val x = Array(OrderedClass(1), OrderedClass(5), OrderedClass(3))
scala.util.Sorting.quickSort(x)
x

It is important that the equals method for an instance of Ordered[A] be consistent with the compare method. However, due to limitations inherent in the type erasure semantics, there is no reasonable way to provide a default implementation of equality for instances of Ordered[A] . Therefore, if you need to be able to use equality on an instance of Ordered[A] you must provide it yourself either when inheriting or instantiating.

It is important that the hashCode method for an instance of Ordered[A] be consistent with the compare method. However, it is not possible to provide a sensible default implementation. Therefore, if you need to be able compute the hash of an instance of Ordered[A] you must provide it yourself either when inheriting or instantiating.

Abstract Value Members From scala.math.Ordered

abstract def compare(that: A): Int

Result of comparing this with operand that .

Implement this method to determine how instances of A will be sorted.

Returns x where:

  • x < 0 when this < that
  • x == 0 when this == that
  • x > 0 when this > that

(defined at scala.math.Ordered)

Concrete Value Members From scala.math.Ordered

def <(that: A): Boolean

Returns true if this is less than that

(defined at scala.math.Ordered)

def <=(that: A): Boolean

Returns true if this is less than or equal to that .

(defined at scala.math.Ordered)

def >(that: A): Boolean

Returns true if this is greater than that .

(defined at scala.math.Ordered)

def >=(that: A): Boolean

Returns true if this is greater than or equal to that .

(defined at scala.math.Ordered)

def compareTo(that: A): Int

Result of comparing this with operand that .

  • Definition Classes
    • Ordered → Comparable (defined at scala.math.Ordered)

Full Source:

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package math

import scala.language.implicitConversions

/** A trait for data that have a single, natural ordering.  See
 *  [[scala.math.Ordering]] before using this trait for
 *  more information about whether to use [[scala.math.Ordering]] instead.
 *
 *  Classes that implement this trait can be sorted with
 *  [[scala.util.Sorting]] and can be compared with standard comparison operators
 *  (e.g. > and <).
 *
 *  Ordered should be used for data with a single, natural ordering (like
 *  integers) while Ordering allows for multiple ordering implementations.
 *  An Ordering instance will be implicitly created if necessary.
 *
 *  [[scala.math.Ordering]] is an alternative to this trait that allows multiple orderings to be
 *  defined for the same type.
 *
 *  [[scala.math.PartiallyOrdered]] is an alternative to this trait for partially ordered data.
 *
 *  For example, create a simple class that implements `Ordered` and then sort it with [[scala.util.Sorting]]:
 *  {{{
 *  case class OrderedClass(n:Int) extends Ordered[OrderedClass] {
 *  	def compare(that: OrderedClass) =  this.n - that.n
 *  }
 *
 *  val x = Array(OrderedClass(1), OrderedClass(5), OrderedClass(3))
 *  scala.util.Sorting.quickSort(x)
 *  x
 *  }}}
 *
 *  It is important that the `equals` method for an instance of `Ordered[A]` be consistent with the
 *  compare method. However, due to limitations inherent in the type erasure semantics, there is no
 *  reasonable way to provide a default implementation of equality for instances of `Ordered[A]`.
 *  Therefore, if you need to be able to use equality on an instance of `Ordered[A]` you must
 *  provide it yourself either when inheriting or instantiating.
 *
 *  It is important that the `hashCode` method for an instance of `Ordered[A]` be consistent with
 *  the `compare` method. However, it is not possible to provide a sensible default implementation.
 *  Therefore, if you need to be able compute the hash of an instance of `Ordered[A]` you must
 *  provide it yourself either when inheriting or instantiating.
 *
 *  @see [[scala.math.Ordering]], [[scala.math.PartiallyOrdered]]
 *  @author  Martin Odersky
 *  @version 1.1, 2006-07-24
 */
trait Ordered[A] extends Any with java.lang.Comparable[A] {

  /** Result of comparing `this` with operand `that`.
   *
   * Implement this method to determine how instances of A will be sorted.
   *
   * Returns `x` where:
   *
   *   - `x < 0` when `this < that`
   *
   *   - `x == 0` when `this == that`
   *
   *   - `x > 0` when  `this > that`
   *
   */
  def compare(that: A): Int

  /** Returns true if `this` is less than `that`
    */
  def <  (that: A): Boolean = (this compare that) <  0

  /** Returns true if `this` is greater than `that`.
    */
  def >  (that: A): Boolean = (this compare that) >  0

  /** Returns true if `this` is less than or equal to `that`.
    */
  def <= (that: A): Boolean = (this compare that) <= 0

  /** Returns true if `this` is greater than or equal to `that`.
    */
  def >= (that: A): Boolean = (this compare that) >= 0

  /** Result of comparing `this` with operand `that`.
    */
  def compareTo(that: A): Int = compare(that)
}

object Ordered {
  /** Lens from `Ordering[T]` to `Ordered[T]` */
  implicit def orderingToOrdered[T](x: T)(implicit ord: Ordering[T]): Ordered[T] =
    new Ordered[T] { def compare(that: T): Int = ord.compare(x, that) }
}