scala.collection.immutable.Vector

final class Vector[+A] extends AbstractSeq[A] with IndexedSeq[A] with GenericTraversableTemplate[A, Vector] with IndexedSeqLike[A, Vector[A]] with VectorPointer[A] with Serializable with CustomParallelizable[A, ParVector[A]]

Vector is a general-purpose, immutable data structure. It provides random access and updates in effectively constant time, as well as very fast append and prepend. Because vectors strike a good balance between fast random selections and fast random functional updates, they are currently the default implementation of immutable indexed sequences. It is backed by a little endian bit-mapped vector trie with a branching factor of 32. Locality is very good, but not contiguous, which is good for very large sequences.

Type Members

class Elements extends AbstractIterator[A] with BufferedIterator[A] with Serializable

The class of the iterator returned by the iterator method. multiple take , drop , and slice operations on this iterator are bunched together for better efficiency.

  • Attributes
    • protected
  • Definition Classes
    • IndexedSeqLike
  • Annotations
    • @ SerialVersionUID ()

type Self = Vector[A]

The type implementing this traversable

  • Attributes
    • protected[this]
  • Definition Classes
    • TraversableLike

class WithFilter extends FilterMonadic[A, Repr]

A class supporting filtered operations. Instances of this class are returned by method withFilter .

  • Definition Classes
    • TraversableLike

Value Members From scala.Function1

def compose[A](g: (A) ⇒ Int): (A) ⇒ A

Composes two instances of Function1 in a new Function1, with this function applied last.

  • A
    • the type to which function g can be applied
  • g
    • a function A => T1
  • returns
    • a new function f such that f(x) == apply(g(x))
  • Definition Classes
    • Function1
  • Annotations
    • @ unspecialized ()

(defined at scala.Function1)

Value Members From scala.PartialFunction

def andThen[C](k: (A) ⇒ C): PartialFunction[Int, C]

Composes this partial function with a transformation function that gets applied to results of this partial function.

  • C
    • the result type of the transformation function.
  • k
    • the transformation function
  • returns
    • a partial function with the same domain as this partial function, which maps arguments x to k(this(x)) .
  • Definition Classes
    • PartialFunction → Function1

(defined at scala.PartialFunction)

def applyOrElse[A1 <: Int, B1 >: A](x: A1, default: (A1) ⇒ B1): B1

Applies this partial function to the given argument when it is contained in the function domain. Applies fallback function where this partial function is not defined.

Note that expression pf.applyOrElse(x, default) is equivalent to

if(pf isDefinedAt x) pf(x) else default(x)

except that applyOrElse method can be implemented more efficiently. For all partial function literals the compiler generates an applyOrElse implementation which avoids double evaluation of pattern matchers and guards. This makes applyOrElse the basis for the efficient implementation for many operations and scenarios, such as:

  • combining partial functions into orElse / andThen chains does not lead to excessive apply / isDefinedAt evaluation
  • lift and unlift do not evaluate source functions twice on each invocation
  • runWith allows efficient imperative-style combining of partial functions with conditionally applied actions

For non-literal partial function classes with nontrivial isDefinedAt method it is recommended to override applyOrElse with custom implementation that avoids double isDefinedAt evaluation. This may result in better performance and more predictable behavior w.r.t. side effects.

  • x
    • the function argument
  • default
    • the fallback function
  • returns
    • the result of this function or fallback function application.
  • Definition Classes
    • PartialFunction
  • Since
    • 2.10

(defined at scala.PartialFunction)

def lift: (Int) ⇒ Option[A]

Turns this partial function into a plain function returning an Option result.

  • returns
    • a function that takes an argument x to Some(this(x)) if this is defined for x , and to None otherwise.
  • Definition Classes
    • PartialFunction
  • See also
    • Function.unlift

(defined at scala.PartialFunction)

def orElse[A1 <: Int, B1 >: A](that: PartialFunction[A1, B1]): PartialFunction[A1, B1]

Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.

  • A1
    • the argument type of the fallback function
  • B1
    • the result type of the fallback function
  • that
    • the fallback function
  • returns
    • a partial function which has as domain the union of the domains of this partial function and that . The resulting partial function takes x to this(x) where this is defined, and to that(x) where it is not.
  • Definition Classes
    • PartialFunction

(defined at scala.PartialFunction)

def runWith[U](action: (A) ⇒ U): (Int) ⇒ Boolean

Composes this partial function with an action function which gets applied to results of this partial function. The action function is invoked only for its side effects; its result is ignored.

Note that expression pf.runWith(action)(x) is equivalent to

if(pf isDefinedAt x) { action(pf(x)); true } else false

except that runWith is implemented via applyOrElse and thus potentially more efficient. Using runWith avoids double evaluation of pattern matchers and guards for partial function literals.

  • action
    • the action function
  • returns
    • a function which maps arguments x to isDefinedAt(x) . The resulting function runs action(this(x)) where this is defined.
  • Definition Classes
    • PartialFunction
  • Since
    • 2.10
  • See also
    • applyOrElse .

(defined at scala.PartialFunction)

Value Members From scala.collection.CustomParallelizable

def parCombiner: Combiner[A, ParVector[A]]

The default par implementation uses the combiner provided by this method to create a new parallel collection.

  • returns
    • a combiner for the parallel collection of type ParRepr
  • Attributes
    • protected[this]
  • Definition Classes
    • CustomParallelizable → Parallelizable

(defined at scala.collection.CustomParallelizable)

Value Members From scala.collection.GenSeqLike

def equals(that: Any): Boolean

The equals method for arbitrary sequences. Compares this sequence to some other object.

  • that
    • The object to compare the sequence to
  • returns
    • true if that is a sequence that has the same elements as this sequence in the same order, false otherwise
  • Definition Classes
    • GenSeqLike → Equals → Any

(defined at scala.collection.GenSeqLike)

def indexOf[B >: A](elem: B): Int

[use case]

Finds index of first occurrence of some value in this vector.

  • elem
    • the element value to search for.
  • returns
    • the index of the first element of this vector that is equal (as determined by == ) to elem , or -1 , if none exists.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def indexOf[B >: A](elem: B, from: Int): Int

[use case]

Finds index of first occurrence of some value in this vector after or at some start index.

  • elem
    • the element value to search for.
  • from
    • the start index
  • returns
    • the index >= from of the first element of this vector that is equal (as determined by == ) to elem , or -1 , if none exists.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def indexWhere(p: (A) ⇒ Boolean): Int

Finds index of first element satisfying some predicate.

Note: may not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • returns
    • the index of the first element of this general sequence that satisfies the predicate p , or -1 , if none exists.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def isDefinedAt(idx: Int): Boolean

Tests whether this general sequence contains given index.

The implementations of methods apply and isDefinedAt turn a Seq[A] into a PartialFunction[Int, A] .

  • idx
    • the index to test
  • returns
    • true if this general sequence contains an element at position idx , false otherwise.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def lastIndexOf[B >: A](elem: B): Int

[use case]

Finds index of last occurrence of some value in this vector.

  • elem
    • the element value to search for.
  • returns
    • the index of the last element of this vector that is equal (as determined by == ) to elem , or -1 , if none exists.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def lastIndexOf[B >: A](elem: B, end: Int): Int

[use case]

Finds index of last occurrence of some value in this vector before or at a given end index.

  • elem
    • the element value to search for.
  • end
    • the end index.
  • returns
    • the index <= end of the last element of this vector that is equal (as determined by == ) to elem , or -1 , if none exists.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def lastIndexWhere(p: (A) ⇒ Boolean): Int

Finds index of last element satisfying some predicate.

Note: will not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • returns
    • the index of the last element of this general sequence that satisfies the predicate p , or -1 , if none exists.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def prefixLength(p: (A) ⇒ Boolean): Int

Returns the length of the longest prefix whose elements all satisfy some predicate.

Note: may not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • returns
    • the length of the longest prefix of this general sequence such that every element of the segment satisfies the predicate p .
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

def startsWith[B](that: GenSeq[B]): Boolean

Tests whether this general sequence starts with the given sequence.

  • that
    • the sequence to test
  • returns
    • true if this collection has that as a prefix, false otherwise.
  • Definition Classes
    • GenSeqLike

(defined at scala.collection.GenSeqLike)

Value Members From scala.collection.IndexedSeqLike

def thisCollection: collection.IndexedSeq[A]

The underlying collection seen as an instance of IndexedSeq . By default this is implemented as the current collection object itself, but this can be overridden.

  • Attributes
    • protected[this]
  • Definition Classes
    • IndexedSeqLike → SeqLike → IterableLike → TraversableLike

(defined at scala.collection.IndexedSeqLike)

def toBuffer[A1 >: A]: Buffer[A1]

Uses the contents of this sequence to create a new mutable buffer.

  • returns
    • a buffer containing all elements of this sequence.
  • Definition Classes
    • IndexedSeqLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IndexedSeqLike)

def toCollection(repr: Vector[A]): collection.IndexedSeq[A]

A conversion from collections of type Repr to IndexedSeq objects. By default this is implemented as just a cast, but this can be overridden.

  • Attributes
    • protected[this]
  • Definition Classes
    • IndexedSeqLike → SeqLike → IterableLike → TraversableLike

(defined at scala.collection.IndexedSeqLike)

Value Members From scala.collection.IterableLike

def canEqual(that: Any): Boolean

Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.

  • that
    • The object with which this iterable collection should be compared
  • returns
    • true , if this iterable collection can possibly equal that , false otherwise. The test takes into consideration only the run-time types of objects but ignores their elements.
  • Definition Classes
    • IterableLike → Equals

(defined at scala.collection.IterableLike)

def copyToArray[B >: A](xs: Array[B], start: Int, len: Int): Unit

[use case]

Copies the elements of this vector to an array. Fills the given array xs with at most len elements of this vector, starting at position start . Copying will stop once either the end of the current vector is reached, or the end of the target array is reached, or len elements have been copied.

  • xs
    • the array to fill.
  • start
    • the starting index.
  • len
    • the maximal number of elements to copy.
  • Definition Classes
    • IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IterableLike)

def exists(p: (A) ⇒ Boolean): Boolean

Tests whether a predicate holds for at least one element of this iterable collection.

Note: may not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • returns
    • false if this iterable collection is empty, otherwise true if the given predicate p holds for some of the elements of this iterable collection, otherwise false
  • Definition Classes
    • IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IterableLike)

def find(p: (A) ⇒ Boolean): Option[A]

Finds the first element of the iterable collection satisfying a predicate, if any.

Note: may not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • p
    • the predicate used to test elements.
  • returns
    • an option value containing the first element in the iterable collection that satisfies p , or None if none exists.
  • Definition Classes
    • IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IterableLike)

def foldRight[B](z: B)(op: (A, B) ⇒ B): B

Applies a binary operator to all elements of this iterable collection and a start value, going right to left.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • z
    • the start value.
  • op
    • the binary operator.
  • returns
    • the result of inserting op between consecutive elements of this iterable collection, going right to left with the start value z on the right:
    op(x_1, op(x_2, ... op(x_n, z)...))
    
where `x1, ..., xn` are the elements of this iterable collection. Returns
 `z` if this iterable collection is empty.
  • Definition Classes
    • IterableLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IterableLike)

def forall(p: (A) ⇒ Boolean): Boolean

Tests whether a predicate holds for all elements of this iterable collection.

Note: may not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • returns
    • true if this iterable collection is empty or the given predicate p holds for all elements of this iterable collection, otherwise false .
  • Definition Classes
    • IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IterableLike)

def foreach[U](f: (A) ⇒ U): Unit

[use case]

Applies a function f to all elements of this vector.

Note: this method underlies the implementation of most other bulk operations. Subclasses should re-implement this method if a more efficient implementation exists.

  • f
    • the function that is applied for its side-effect to every element. The result of function f is discarded.
  • Definition Classes
    • IterableLike → TraversableLike → GenTraversableLike → TraversableOnce → GenTraversableOnce → FilterMonadic

(defined at scala.collection.IterableLike)

def grouped(size: Int): Iterator[Vector[A]]

Partitions elements in fixed size iterable collections.

  • size
    • the number of elements per group
  • returns
    • An iterator producing iterable collections of size size , except the last will be less than size size if the elements don’t divide evenly.
  • Definition Classes
    • IterableLike
  • See also
    • scala.collection.Iterator, method grouped

(defined at scala.collection.IterableLike)

def reduceRight[B >: A](op: (A, B) ⇒ B): B

Applies a binary operator to all elements of this iterable collection, going right to left.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • op
    • the binary operator.
  • returns
    • the result of inserting op between consecutive elements of this iterable collection, going right to left:
    op(x_1, op(x_2, ..., op(x_{n-1}, x_n)...))
    
where `x1, ..., xn` are the elements of this iterable collection.
  • Definition Classes
    • IterableLike → TraversableOnce → GenTraversableOnce
  • Exceptions thrown
    • UnsupportedOperationException if this iterable collection is empty.

(defined at scala.collection.IterableLike)

def sameElements[B >: A](that: GenIterable[B]): Boolean

[use case]

Checks if the other iterable collection contains the same elements in the same order as this vector.

  • that
    • the collection to compare with.
  • returns
    • true , if both collections contain the same elements in the same order, false otherwise.
  • Definition Classes
    • IterableLike → GenIterableLike

(defined at scala.collection.IterableLike)

def sliding(size: Int): Iterator[Vector[A]]

Groups elements in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.) “Sliding window” step is 1 by default.

  • size
    • the number of elements per group
  • returns
    • An iterator producing iterable collections of size size , except the last and the only element will be truncated if there are fewer elements than size.
  • Definition Classes
    • IterableLike
  • See also
    • scala.collection.Iterator, method sliding

(defined at scala.collection.IterableLike)

def sliding(size: Int, step: Int): Iterator[Vector[A]]

Groups elements in fixed size blocks by passing a “sliding window” over them (as opposed to partitioning them, as is done in grouped.)

  • size
    • the number of elements per group
  • step
    • the distance between the first elements of successive groups
  • returns
    • An iterator producing iterable collections of size size , except the last and the only element will be truncated if there are fewer elements than size.
  • Definition Classes
    • IterableLike
  • See also
    • scala.collection.Iterator, method sliding

(defined at scala.collection.IterableLike)

def takeWhile(p: (A) ⇒ Boolean): Vector[A]

Takes longest prefix of elements that satisfy a predicate.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • returns
    • the longest prefix of this iterable collection whose elements all satisfy the predicate p .
  • Definition Classes
    • IterableLike → TraversableLike → GenTraversableLike

(defined at scala.collection.IterableLike)

def toIterable: collection.Iterable[A]

Returns this iterable collection as an iterable collection.

A new collection will not be built; lazy collections will stay lazy.

Note: will not terminate for infinite-sized collections.

  • returns
    • an Iterable containing all elements of this iterable collection.
  • Definition Classes
    • IterableLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.IterableLike)

def toStream: Stream[A]

Converts this iterable collection to a stream.

  • returns
    • a stream containing all elements of this iterable collection.
  • Definition Classes
    • IterableLike → TraversableLike → GenTraversableOnce

(defined at scala.collection.IterableLike)

def zipAll[B, A1 >: A, That](that: GenIterable[B], thisElem: A1, thatElem: B)(implicit bf: CanBuildFrom[Vector[A], (A1, B), That]): That

[use case]

Returns a vector formed from this vector and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.

  • B
    • the type of the second half of the returned pairs
  • that
    • The iterable providing the second half of each result pair
  • thisElem
    • the element to be used to fill up the result if this vector is shorter than that .
  • thatElem
    • the element to be used to fill up the result if that is shorter than this vector.
  • returns
    • a new vector containing pairs consisting of corresponding elements of this vector and that . The length of the returned collection is the maximum of the lengths of this vector and that . If this vector is shorter than that , thisElem values are used to pad the result. If that is shorter than this vector, thatElem values are used to pad the result.
  • Definition Classes
    • IterableLike → GenIterableLike

(defined at scala.collection.IterableLike)

def zipWithIndex[A1 >: A, That](implicit bf: CanBuildFrom[Vector[A], (A1, Int), That]): That

[use case]

Zips this vector with its indices.

  • returns
    • A new vector containing pairs consisting of all elements of this vector paired with their index. Indices start at 0 .
  • Definition Classes
    • IterableLike → GenIterableLike

Example:

List("a", "b", "c").zipWithIndex = List(("a", 0), ("b", 1), ("c", 2))

(defined at scala.collection.IterableLike)

def zip[A1 >: A, B, That](that: GenIterable[B])(implicit bf: CanBuildFrom[Vector[A], (A1, B), That]): That

[use case]

Returns a vector formed from this vector and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.

  • B
    • the type of the second half of the returned pairs
  • that
    • The iterable providing the second half of each result pair
  • returns
    • a new vector containing pairs consisting of corresponding elements of this vector and that . The length of the returned collection is the minimum of the lengths of this vector and that .
  • Definition Classes
    • IterableLike → GenIterableLike

(defined at scala.collection.IterableLike)

Value Members From scala.collection.SeqLike

def combinations(n: Int): Iterator[Vector[A]]

Iterates over combinations. A combination of length n is a subsequence of the original sequence, with the elements taken in order. Thus, "xy" and "yy" are both length-2 combinations of "xyy" , but "yx" is not. If there is more than one way to generate the same subsequence, only one will be returned.

For example, "xyyy" has three different ways to generate "xy" depending on whether the first, second, or third "y" is selected. However, since all are identical, only one will be chosen. Which of the three will be taken is an implementation detail that is not defined.

  • returns
    • An Iterator which traverses the possible n-element combinations of this sequence.
  • Definition Classes
    • SeqLike

Example:

"abbbc".combinations(2) = Iterator(ab, ac, bb, bc)

(defined at scala.collection.SeqLike)

def containsSlice[B](that: GenSeq[B]): Boolean

Tests whether this sequence contains a given sequence as a slice.

Note: may not terminate for infinite-sized collections.

  • that
    • the sequence to test
  • returns
    • true if this sequence contains a slice with the same elements as that , otherwise false .
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def contains[A1 >: A](elem: A1): Boolean

Tests whether this sequence contains a given value as an element.

Note: may not terminate for infinite-sized collections.

  • elem
    • the element to test.
  • returns
    • true if this sequence has an element that is equal (as determined by == ) to elem , false otherwise.
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def corresponds[B](that: GenSeq[B])(p: (A, B) ⇒ Boolean): Boolean

Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate.

  • B
    • the type of the elements of that
  • that
    • the other sequence
  • p
    • the test predicate, which relates elements from both sequences
  • returns
    • true if both sequences have the same length and p(x, y) is true for all corresponding elements x of this sequence and y of that , otherwise false .
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def diff[B >: A](that: GenSeq[B]): Vector[A]

[use case]

Computes the multiset difference between this vector and another sequence.

  • that
    • the sequence of elements to remove
  • returns
    • a new vector which contains all elements of this vector except some of occurrences of elements that also appear in that . If an element value x appears n times in that , then the first n occurrences of x will not form part of the result, but any following occurrences will.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def distinct: Vector[A]

Builds a new sequence from this sequence without any duplicate elements.

Note: will not terminate for infinite-sized collections.

  • returns
    • A new sequence which contains the first occurrence of every element of this sequence.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def endsWith[B](that: GenSeq[B]): Boolean

Tests whether this sequence ends with the given sequence.

Note: will not terminate for infinite-sized collections.

  • that
    • the sequence to test
  • returns
    • true if this sequence has that as a suffix, false otherwise.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def indexOfSlice[B >: A](that: GenSeq[B]): Int

Finds first index where this sequence contains a given sequence as a slice.

Note: may not terminate for infinite-sized collections.

  • that
    • the sequence to test
  • returns
    • the first index such that the elements of this sequence starting at this index match the elements of sequence that , or -1 of no such subsequence exists.
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def indexOfSlice[B >: A](that: GenSeq[B], from: Int): Int

Finds first index after or at a start index where this sequence contains a given sequence as a slice.

Note: may not terminate for infinite-sized collections.

  • that
    • the sequence to test
  • from
    • the start index
  • returns
    • the first index >= from such that the elements of this sequence starting at this index match the elements of sequence that , or -1 of no such subsequence exists.
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def indexWhere(p: (A) ⇒ Boolean, from: Int): Int

Finds index of the first element satisfying some predicate after or at some start index.

Note: may not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • from
    • the start index
  • returns
    • the index >= from of the first element of this sequence that satisfies the predicate p , or -1 , if none exists.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def indices: Range

Produces the range of all indices of this sequence.

  • returns
    • a Range value from 0 to one less than the length of this sequence.
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def intersect[B >: A](that: GenSeq[B]): Vector[A]

[use case]

Computes the multiset intersection between this vector and another sequence.

  • that
    • the sequence of elements to intersect with.
  • returns
    • a new vector which contains all elements of this vector which also appear in that . If an element value x appears n times in that , then the first n occurrences of x will be retained in the result, but any following occurrences will be omitted.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def lastIndexOfSlice[B >: A](that: GenSeq[B]): Int

Finds last index where this sequence contains a given sequence as a slice.

Note: will not terminate for infinite-sized collections.

  • that
    • the sequence to test
  • returns
    • the last index such that the elements of this sequence starting a this index match the elements of sequence that , or -1 of no such subsequence exists.
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def lastIndexOfSlice[B >: A](that: GenSeq[B], end: Int): Int

Finds last index before or at a given end index where this sequence contains a given sequence as a slice.

  • that
    • the sequence to test
  • end
    • the end index
  • returns
    • the last index <= end such that the elements of this sequence starting at this index match the elements of sequence that , or -1 of no such subsequence exists.
  • Definition Classes
    • SeqLike

(defined at scala.collection.SeqLike)

def lastIndexWhere(p: (A) ⇒ Boolean, end: Int): Int

Finds index of last element satisfying some predicate before or at given end index.

  • p
    • the predicate used to test elements.
  • returns
    • the index <= end of the last element of this sequence that satisfies the predicate p , or -1 , if none exists.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def padTo[B >: A, That](len: Int, elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

A copy of this vector with an element value appended until a given target length is reached.

  • len
    • the target length
  • elem
    • the padding value
  • returns
    • a new vector consisting of all elements of this vector followed by the minimal number of occurrences of elem so that the resulting vector has a length of at least len .
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def patch[B >: A, That](from: Int, patch: GenSeq[B], replaced: Int)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Produces a new vector where a slice of elements in this vector is replaced by another sequence.

  • from
    • the index of the first replaced element
  • replaced
    • the number of elements to drop in the original vector
  • returns
    • a new vector consisting of all elements of this vector except that replaced elements starting from from are replaced by patch .
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def permutations: Iterator[Vector[A]]

Iterates over distinct permutations.

  • returns
    • An Iterator which traverses the distinct permutations of this sequence.
  • Definition Classes
    • SeqLike

Example:

"abb".permutations = Iterator(abb, bab, bba)

(defined at scala.collection.SeqLike)

def reverse: Vector[A]

Returns new sequence with elements in reversed order.

Note: will not terminate for infinite-sized collections.

  • returns
    • A new sequence with all elements of this sequence in reversed order.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def reverseMap[B, That](f: (A) ⇒ B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Builds a new collection by applying a function to all elements of this vector and collecting the results in reversed order.

Note: xs.reverseMap(f) is the same as xs.reverse.map(f) but might be more efficient.

  • B
    • the element type of the returned collection.
  • f
    • the function to apply to each element.
  • returns
    • a new vector resulting from applying the given function f to each element of this vector and collecting the results in reversed order.
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def segmentLength(p: (A) ⇒ Boolean, from: Int): Int

Computes length of longest segment whose elements all satisfy some predicate.

Note: may not terminate for infinite-sized collections.

  • p
    • the predicate used to test elements.
  • from
    • the index where the search starts.
  • returns
    • the length of the longest segment of this sequence starting from index from such that every element of the segment satisfies the predicate p .
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def sortBy[B](f: (A) ⇒ B)(implicit ord: math.Ordering[B]): Vector[A]

Sorts this Seq according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.

  • B
    • the target type of the transformation f , and the type where the ordering ord is defined.
  • f
    • the transformation function mapping elements to some other domain B .
  • ord
    • the ordering assumed on domain B .
  • returns
    • a sequence consisting of the elements of this sequence sorted according to the ordering where x < y if ord.lt(f(x), f(y)) .
  • Definition Classes
    • SeqLike
  • See also
    • scala.math.Ordering Note: will not terminate for infinite-sized collections.

Example:

val words = "The quick brown fox jumped over the lazy dog".split(' ')
// this works because scala.Ordering will implicitly provide an Ordering[Tuple2[Int, Char]]
words.sortBy(x => (x.length, x.head))
res0: Array[String] = Array(The, dog, fox, the, lazy, over, brown, quick, jumped)

(defined at scala.collection.SeqLike)

def sortWith(lt: (A, A) ⇒ Boolean): Vector[A]

Sorts this sequence according to a comparison function.

Note: will not terminate for infinite-sized collections.

The sort is stable. That is, elements that are equal (as determined by lt ) appear in the same order in the sorted sequence as in the original.

  • lt
    • the comparison function which tests whether its first argument precedes its second argument in the desired ordering.
  • returns
    • a sequence consisting of the elements of this sequence sorted according to the comparison function lt .
  • Definition Classes
    • SeqLike

Example:

List("Steve", "Tom", "John", "Bob").sortWith(_.compareTo(_) < 0) =
List("Bob", "John", "Steve", "Tom")

(defined at scala.collection.SeqLike)

def sorted[B >: A](implicit ord: math.Ordering[B]): Vector[A]

Sorts this sequence according to an Ordering.

The sort is stable. That is, elements that are equal (as determined by lt ) appear in the same order in the sorted sequence as in the original.

  • ord
    • the ordering to be used to compare elements.
  • returns
    • a sequence consisting of the elements of this sequence sorted according to the ordering ord .
  • Definition Classes
    • SeqLike
  • See also
    • scala.math.Ordering

(defined at scala.collection.SeqLike)

def startsWith[B](that: GenSeq[B], offset: Int): Boolean

Tests whether this sequence contains the given sequence at a given index.

Note : If the both the receiver object this and the argument that are infinite sequences this method may not terminate.

  • that
    • the sequence to test
  • offset
    • the index where the sequence is searched.
  • returns
    • true if the sequence that is contained in this sequence at index offset , otherwise false .
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def union[B >: A, That](that: GenSeq[B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Produces a new sequence which contains all elements of this vector and also all elements of a given sequence. xs union ys is equivalent to xs ++ ys .

Another way to express this is that xs union ys computes the order-preserving multi-set union of xs and ys . union is hence a counter-part of diff and intersect which also work on multi-sets.

  • that
    • the sequence to add.
  • returns
    • a new vector which contains all elements of this vector followed by all elements of that .
  • Definition Classes
    • SeqLike → GenSeqLike

(defined at scala.collection.SeqLike)

def view(from: Int, until: Int): SeqView[A, Vector[A]]

Creates a non-strict view of a slice of this sequence.

Note: the difference between view and slice is that view produces a view of the current sequence, whereas slice produces a new sequence.

Note: view(from, to) is equivalent to view.slice(from, to)

  • from
    • the index of the first element of the view
  • until
    • the index of the element following the view
  • returns
    • a non-strict view of a slice of this sequence, starting at index from and extending up to (but not including) index until .
  • Definition Classes
    • SeqLike → IterableLike → TraversableLike

(defined at scala.collection.SeqLike)

def view: SeqView[A, Vector[A]]

Creates a non-strict view of this sequence.

  • returns
    • a non-strict view of this sequence.
  • Definition Classes
    • SeqLike → IterableLike → TraversableLike

(defined at scala.collection.SeqLike)

Value Members From scala.collection.TraversableLike

def ++:[B >: A, That](that: collection.Traversable[B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That

As with ++ , returns a new collection containing the elements from the left operand followed by the elements from the right operand.

It differs from ++ in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.

Example:

scala> val x = List(1)
x: List[Int] = List(1)

scala> val y = LinkedList(2)
y: scala.collection.mutable.LinkedList[Int] = LinkedList(2)

scala> val z = x ++: y
z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)

This overload exists because: for the implementation of ++: we should reuse that of ++ because many collections override it with more efficient versions.

Since TraversableOnce has no ++ method, we have to implement that directly, but Traversable and down can use the overload.

  • B
    • the element type of the returned collection.
  • That
    • the class of the returned collection. Where possible, That is the same class as the current collection class Repr , but this depends on the element type B being admissible for that class, which means that an implicit instance of type CanBuildFrom[Repr, B, That] is found.
  • that
    • the traversable to append.
  • bf
    • an implicit value of class CanBuildFrom which determines the result class That from the current representation type Repr and and the new element type B .
  • returns
    • a new collection of type That which contains all elements of this traversable collection followed by all elements of that .
  • Definition Classes
    • TraversableLike

(defined at scala.collection.TraversableLike)

def ++:[B >: A, That](that: TraversableOnce[B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

As with ++ , returns a new collection containing the elements from the left operand followed by the elements from the right operand.

It differs from ++ in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.

Example:

scala> val x = List(1)
x: List[Int] = List(1)

scala> val y = LinkedList(2)
y: scala.collection.mutable.LinkedList[Int] = LinkedList(2)

scala> val z = x ++: y
z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
  • B
    • the element type of the returned collection.
  • that
    • the traversable to append.
  • returns
    • a new vector which contains all elements of this vector followed by all elements of that .
  • Definition Classes
    • TraversableLike

(defined at scala.collection.TraversableLike)

def collect[B, That](pf: PartialFunction[A, B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Builds a new collection by applying a partial function to all elements of this vector on which the function is defined.

  • B
    • the element type of the returned collection.
  • pf
    • the partial function which filters and maps the vector.
  • returns
    • a new vector resulting from applying the given partial function pf to each element on which it is defined and collecting the results. The order of the elements is preserved.
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def dropWhile(p: (A) ⇒ Boolean): Vector[A]

Drops longest prefix of elements that satisfy a predicate.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • returns
    • the longest suffix of this traversable collection whose first element does not satisfy the predicate p .
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def filter(p: (A) ⇒ Boolean): Vector[A]

Selects all elements of this traversable collection which satisfy a predicate.

  • p
    • the predicate used to test elements.
  • returns
    • a new traversable collection consisting of all elements of this traversable collection that satisfy the given predicate p . The order of the elements is preserved.
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def filterNot(p: (A) ⇒ Boolean): Vector[A]

Selects all elements of this traversable collection which do not satisfy a predicate.

  • p
    • the predicate used to test elements.
  • returns
    • a new traversable collection consisting of all elements of this traversable collection that do not satisfy the given predicate p . The order of the elements is preserved.
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def flatMap[B, That](f: (A) ⇒ GenTraversableOnce[B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Builds a new collection by applying a function to all elements of this vector and using the elements of the resulting collections.

For example:

def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")

The type of the resulting collection is guided by the static type of vector. This might cause unexpected results sometimes. For example:

// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set
def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet)

// lettersOf will return a Set[Char], not a Seq
def lettersOf(words: Seq[String]) = words.toSet flatMap (word => word.toSeq)

// xs will be an Iterable[Int]
val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2)

// ys will be a Map[Int, Int]
val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
  • B
    • the element type of the returned collection.
  • f
    • the function to apply to each element.
  • returns
    • a new vector resulting from applying the given collection-valued function f to each element of this vector and concatenating the results.
  • Definition Classes
    • TraversableLike → GenTraversableLike → FilterMonadic

(defined at scala.collection.TraversableLike)

def groupBy[K](f: (A) ⇒ K): Map[K, Vector[A]]

Partitions this traversable collection into a map of traversable collections according to some discriminator function.

Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new traversable collection.

  • K
    • the type of keys returned by the discriminator function.
  • f
    • the discriminator function.
  • returns
    • A map from keys to traversable collections such that the following invariant holds:
    (xs groupBy f)(k) = xs filter (x => f(x) == k)
    
That is, every key `k` is bound to a traversable collection of those
elements `x` for which `f(x)` equals `k` .
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def inits: Iterator[Vector[A]]

Iterates over the inits of this traversable collection. The first value will be this traversable collection and the final one will be an empty traversable collection, with the intervening values the results of successive applications of init .

  • returns
    • an iterator over all the inits of this traversable collection
  • Definition Classes
    • TraversableLike

Example:

List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)

(defined at scala.collection.TraversableLike)

def map[B, That](f: (A) ⇒ B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Builds a new collection by applying a function to all elements of this vector.

  • B
    • the element type of the returned collection.
  • f
    • the function to apply to each element.
  • returns
    • a new vector resulting from applying the given function f to each element of this vector and collecting the results.
  • Definition Classes
    • TraversableLike → GenTraversableLike → FilterMonadic

(defined at scala.collection.TraversableLike)

def partition(p: (A) ⇒ Boolean): (Vector[A], Vector[A])

Partitions this traversable collection in two traversable collections according to a predicate.

  • p
    • the predicate on which to partition.
  • returns
    • a pair of traversable collections: the first traversable collection consists of all elements that satisfy the predicate p and the second traversable collection consists of all elements that don’t. The relative order of the elements in the resulting traversable collections is the same as in the original traversable collection.
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def repr: Vector[A]

The collection of type traversable collection underlying this TraversableLike object. By default this is implemented as the TraversableLike object itself, but this can be overridden.

  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def scanLeft[B, That](z: B)(op: (B, A) ⇒ B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

Produces a collection containing cumulative results of applying the operator going left to right.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • B
    • the type of the elements in the resulting collection
  • That
    • the actual type of the resulting collection
  • z
    • the initial value
  • op
    • the binary operator applied to the intermediate result and the element
  • bf
    • an implicit value of class CanBuildFrom which determines the result class That from the current representation type Repr and and the new element type B .
  • returns
    • collection with intermediate results
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def scanRight[B, That](z: B)(op: (A, B) ⇒ B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered.

Example:

List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
  • B
    • the type of the elements in the resulting collection
  • That
    • the actual type of the resulting collection
  • z
    • the initial value
  • op
    • the binary operator applied to the intermediate result and the element
  • bf
    • an implicit value of class CanBuildFrom which determines the result class That from the current representation type Repr and and the new element type B .
  • returns
    • collection with intermediate results
  • Definition Classes
    • TraversableLike → GenTraversableLike
  • Annotations
    • @migration
  • Migration
    • (Changed in version 2.9.0) The behavior of scanRight has changed. The previous behavior can be reproduced with scanRight.reverse.

(defined at scala.collection.TraversableLike)

def scan[B >: A, That](z: B)(op: (B, B) ⇒ B)(implicit cbf: CanBuildFrom[Vector[A], B, That]): That

Computes a prefix scan of the elements of the collection.

Note: The neutral element z may be applied more than once.

  • B
    • element type of the resulting collection
  • That
    • type of the resulting collection
  • z
    • neutral element for the operator op
  • op
    • the associative operator for the scan
  • cbf
    • combiner factory which provides a combiner
  • returns
    • a new traversable collection containing the prefix scan of the elements in this traversable collection
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def span(p: (A) ⇒ Boolean): (Vector[A], Vector[A])

Splits this traversable collection into a prefix/suffix pair according to a predicate.

Note: c span p is equivalent to (but possibly more efficient than) (c takeWhile p, c dropWhile p) , provided the evaluation of the predicate p does not cause any side-effects.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • returns
    • a pair consisting of the longest prefix of this traversable collection whose elements all satisfy p , and the rest of this traversable collection.
  • Definition Classes
    • TraversableLike → GenTraversableLike

(defined at scala.collection.TraversableLike)

def tails: Iterator[Vector[A]]

Iterates over the tails of this traversable collection. The first value will be this traversable collection and the final one will be an empty traversable collection, with the intervening values the results of successive applications of tail .

  • returns
    • an iterator over all the tails of this traversable collection
  • Definition Classes
    • TraversableLike

Example:

List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)

(defined at scala.collection.TraversableLike)

def toTraversable: collection.Traversable[A]

Converts this traversable collection to an unspecified Traversable. Will return the same collection if this instance is already Traversable.

Note: will not terminate for infinite-sized collections.

  • returns
    • a Traversable containing all elements of this traversable collection.
  • Definition Classes
    • TraversableLike → TraversableOnce → GenTraversableOnce
  • Annotations
    • @ deprecatedOverriding (message =…, since = “2.11.0”)

(defined at scala.collection.TraversableLike)

def withFilter(p: (A) ⇒ Boolean): FilterMonadic[A, Vector[A]]

Creates a non-strict filter of this traversable collection.

Note: the difference between c filter p and c withFilter p is that the former creates a new collection, whereas the latter only restricts the domain of subsequent map , flatMap , foreach , and withFilter operations.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • p
    • the predicate used to test elements.
  • returns
    • an object of class WithFilter , which supports map , flatMap , foreach , and withFilter operations. All these operations apply to those elements of this traversable collection which satisfy the predicate p .
  • Definition Classes
    • TraversableLike → FilterMonadic

(defined at scala.collection.TraversableLike)

Value Members From scala.collection.TraversableOnce

def /:[B](z: B)(op: (B, A) ⇒ B): B

Applies a binary operator to a start value and all elements of this traversable or iterator, going left to right.

Note: /: is alternate syntax for foldLeft ; z /: xs is the same as xs foldLeft z .

Examples:

Note that the folding function used to compute b is equivalent to that used to compute c.

scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)

scala> val b = (5 /: a)(_+_)
b: Int = 15

scala> val c = (5 /: a)((x,y) => x + y)
c: Int = 15

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • z
    • the start value.
  • op
    • the binary operator.
  • returns
    • the result of inserting op between consecutive elements of this traversable or iterator, going left to right with the start value z on the left:
    op(...op(op(z, x_1), x_2), ..., x_n)
    
where `x1, ..., xn` are the elements of this traversable or iterator.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def :\[B](z: B)(op: (A, B) ⇒ B): B

Applies a binary operator to all elements of this traversable or iterator and a start value, going right to left.

Note: :\ is alternate syntax for foldRight ; xs :\ z is the same as xs foldRight z .

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

Examples:

Note that the folding function used to compute b is equivalent to that used to compute c.

scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)

scala> val b = (a :\ 5)(_+_)
b: Int = 15

scala> val c = (a :\ 5)((x,y) => x + y)
c: Int = 15
  • B
    • the result type of the binary operator.
  • z
    • the start value
  • op
    • the binary operator
  • returns
    • the result of inserting op between consecutive elements of this traversable or iterator, going right to left with the start value z on the right:
    op(x_1, op(x_2, ... op(x_n, z)...))
    
where `x1, ..., xn` are the elements of this traversable or iterator.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def addString(b: StringBuilder): StringBuilder

Appends all elements of this traversable or iterator to a string builder. The written text consists of the string representations (w.r.t. the method toString ) of all elements of this traversable or iterator without any separator string.

Example:

scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)

scala> val b = new StringBuilder()
b: StringBuilder =

scala> val h = a.addString(b)
h: StringBuilder = 1234
  • b
    • the string builder to which elements are appended.
  • returns
    • the string builder b to which elements were appended.
  • Definition Classes
    • TraversableOnce

(defined at scala.collection.TraversableOnce)

def addString(b: StringBuilder, sep: String): StringBuilder

Appends all elements of this traversable or iterator to a string builder using a separator string. The written text consists of the string representations (w.r.t. the method toString ) of all elements of this traversable or iterator, separated by the string sep .

Example:

scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)

scala> val b = new StringBuilder()
b: StringBuilder =

scala> a.addString(b, ", ")
res0: StringBuilder = 1, 2, 3, 4
  • b
    • the string builder to which elements are appended.
  • sep
    • the separator string.
  • returns
    • the string builder b to which elements were appended.
  • Definition Classes
    • TraversableOnce

(defined at scala.collection.TraversableOnce)

def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder

Appends all elements of this traversable or iterator to a string builder using start, end, and separator strings. The written text begins with the string start and ends with the string end . Inside, the string representations (w.r.t. the method toString ) of all elements of this traversable or iterator are separated by the string sep .

Example:

scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)

scala> val b = new StringBuilder()
b: StringBuilder =

scala> a.addString(b , "List(" , ", " , ")")
res5: StringBuilder = List(1, 2, 3, 4)
  • b
    • the string builder to which elements are appended.
  • start
    • the starting string.
  • sep
    • the separator string.
  • end
    • the ending string.
  • returns
    • the string builder b to which elements were appended.
  • Definition Classes
    • TraversableOnce

(defined at scala.collection.TraversableOnce)

def aggregate[B](z: ⇒ B)(seqop: (B, A) ⇒ B, combop: (B, B) ⇒ B): B

Aggregates the results of applying an operator to subsequent elements.

This is a more general form of fold and reduce . It is similar to foldLeft in that it doesn’t require the result to be a supertype of the element type. In addition, it allows parallel collections to be processed in chunks, and then combines the intermediate results.

aggregate splits the traversable or iterator into partitions and processes each partition by sequentially applying seqop , starting with z (like foldLeft ). Those intermediate results are then combined by using combop (like fold ). The implementation of this operation may operate on an arbitrary number of collection partitions (even 1), so combop may be invoked an arbitrary number of times (even 0).

As an example, consider summing up the integer values of a list of chars. The initial value for the sum is 0. First, seqop transforms each input character to an Int and adds it to the sum (of the partition). Then, combop just needs to sum up the intermediate results of the partitions:

List('a', 'b', 'c').aggregate(0)({ (sum, ch) => sum + ch.toInt }, { (p1, p2) => p1 + p2 })
  • B
    • the type of accumulated results
  • z
    • the initial value for the accumulated result of the partition - this will typically be the neutral element for the seqop operator (e.g. Nil for list concatenation or 0 for summation) and may be evaluated more than once
  • seqop
    • an operator used to accumulate results within a partition
  • combop
    • an associative operator used to combine results from different partitions
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def collectFirst[B](pf: PartialFunction[A, B]): Option[B]

Finds the first element of the traversable or iterator for which the given partial function is defined, and applies the partial function to it.

Note: may not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered.

  • pf
    • the partial function
  • returns
    • an option value containing pf applied to the first value for which it is defined, or None if none exists.
  • Definition Classes
    • TraversableOnce

Example:

Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)

(defined at scala.collection.TraversableOnce)

def copyToArray[B >: A](xs: Array[B]): Unit

[use case]

Copies the elements of this vector to an array. Fills the given array xs with values of this vector. Copying will stop once either the end of the current vector is reached, or the end of the target array is reached.

  • xs
    • the array to fill.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def copyToArray[B >: A](xs: Array[B], start: Int): Unit

[use case]

Copies the elements of this vector to an array. Fills the given array xs with values of this vector, beginning at index start . Copying will stop once either the end of the current vector is reached, or the end of the target array is reached.

  • xs
    • the array to fill.
  • start
    • the starting index.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def copyToBuffer[B >: A](dest: Buffer[B]): Unit

Copies all elements of this traversable or iterator to a buffer.

Note: will not terminate for infinite-sized collections.

  • dest
    • The buffer to which elements are copied.
  • Definition Classes
    • TraversableOnce

(defined at scala.collection.TraversableOnce)

def count(p: (A) ⇒ Boolean): Int

Counts the number of elements in the traversable or iterator which satisfy a predicate.

  • p
    • the predicate used to test elements.
  • returns
    • the number of elements satisfying the predicate p .
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def foldLeft[B](z: B)(op: (B, A) ⇒ B): B

Applies a binary operator to a start value and all elements of this traversable or iterator, going left to right.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • z
    • the start value.
  • op
    • the binary operator.
  • returns
    • the result of inserting op between consecutive elements of this traversable or iterator, going left to right with the start value z on the left:
    op(...op(z, x_1), x_2, ..., x_n)
    
where `x1, ..., xn` are the elements of this traversable or iterator.
Returns `z` if this traversable or iterator is empty.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def fold[A1 >: A](z: A1)(op: (A1, A1) ⇒ A1): A1

Folds the elements of this traversable or iterator using the specified associative binary operator.

The order in which operations are performed on elements is unspecified and may be nondeterministic.

Note: will not terminate for infinite-sized collections.

  • A1
    • a type parameter for the binary operator, a supertype of A .
  • z
    • a neutral element for the fold operation; may be added to the result an arbitrary number of times, and must not change the result (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication).
  • op
    • a binary operator that must be associative.
  • returns
    • the result of applying the fold operator op between all the elements and z , or z if this traversable or iterator is empty.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def maxBy[B](f: (A) ⇒ B)(implicit cmp: Ordering[B]): A

[use case]

Finds the first element which yields the largest value measured by function f.

  • B
    • The result type of the function f.
  • f
    • The measuring function.
  • returns
    • the first element of this vector with the largest value measured by function f.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def minBy[B](f: (A) ⇒ B)(implicit cmp: Ordering[B]): A

[use case]

Finds the first element which yields the smallest value measured by function f.

  • B
    • The result type of the function f.
  • f
    • The measuring function.
  • returns
    • the first element of this vector with the smallest value measured by function f.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def mkString(sep: String): String

Displays all elements of this traversable or iterator in a string using a separator string.

  • sep
    • the separator string.
  • returns
    • a string representation of this traversable or iterator. In the resulting string the string representations (w.r.t. the method toString ) of all elements of this traversable or iterator are separated by the string sep .
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

Example:

List(1, 2, 3).mkString("|") = "1|2|3"

(defined at scala.collection.TraversableOnce)

def mkString(start: String, sep: String, end: String): String

Displays all elements of this traversable or iterator in a string using start, end, and separator strings.

  • start
    • the starting string.
  • sep
    • the separator string.
  • end
    • the ending string.
  • returns
    • a string representation of this traversable or iterator. The resulting string begins with the string start and ends with the string end . Inside, the string representations (w.r.t. the method toString ) of all elements of this traversable or iterator are separated by the string sep .
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

Example:

List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"

(defined at scala.collection.TraversableOnce)

def reduceLeftOption[B >: A](op: (B, A) ⇒ B): Option[B]

Optionally applies a binary operator to all elements of this traversable or iterator, going left to right.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • op
    • the binary operator.
  • returns
    • an option value containing the result of reduceLeft(op) if this traversable or iterator is nonempty, None otherwise.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def reduceLeft[B >: A](op: (B, A) ⇒ B): B

Applies a binary operator to all elements of this traversable or iterator, going left to right.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • op
    • the binary operator.
  • returns
    • the result of inserting op between consecutive elements of this traversable or iterator, going left to right:
    op( op( ... op(x_1, x_2) ..., x_{n-1}), x_n)
    
where `x1, ..., xn` are the elements of this traversable or iterator.
  • Definition Classes
    • TraversableOnce
  • Exceptions thrown
    • UnsupportedOperationException if this traversable or iterator is empty.

(defined at scala.collection.TraversableOnce)

def reduceOption[A1 >: A](op: (A1, A1) ⇒ A1): Option[A1]

Reduces the elements of this traversable or iterator, if any, using the specified associative binary operator.

The order in which operations are performed on elements is unspecified and may be nondeterministic.

  • A1
    • A type parameter for the binary operator, a supertype of A .
  • op
    • A binary operator that must be associative.
  • returns
    • An option value containing result of applying reduce operator op between all the elements if the collection is nonempty, and None otherwise.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def reduceRightOption[B >: A](op: (A, B) ⇒ B): Option[B]

Optionally applies a binary operator to all elements of this traversable or iterator, going right to left.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

  • B
    • the result type of the binary operator.
  • op
    • the binary operator.
  • returns
    • an option value containing the result of reduceRight(op) if this traversable or iterator is nonempty, None otherwise.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def reduce[A1 >: A](op: (A1, A1) ⇒ A1): A1

Reduces the elements of this traversable or iterator using the specified associative binary operator.

The order in which operations are performed on elements is unspecified and may be nondeterministic.

  • A1
    • A type parameter for the binary operator, a supertype of A .
  • op
    • A binary operator that must be associative.
  • returns
    • The result of applying reduce operator op between all the elements if the traversable or iterator is nonempty.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce
  • Exceptions thrown
    • UnsupportedOperationException if this traversable or iterator is empty.

(defined at scala.collection.TraversableOnce)

def reversed: scala.List[A]

  • Attributes
    • protected[this]
  • Definition Classes
    • TraversableOnce

(defined at scala.collection.TraversableOnce)

def toList: scala.List[A]

Converts this traversable or iterator to a list.

Note: will not terminate for infinite-sized collections.

  • returns
    • a list containing all elements of this traversable or iterator.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def toMap[T, U](implicit ev: <:<[A, (T, U)]): Map[T, U]

[use case]

Converts this vector to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.

  • returns
    • a map of type immutable.Map[T, U] containing all key/value pairs of type (T, U) of this vector.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

def toSet[B >: A]: Set[B]

Converts this traversable or iterator to a set.

Note: will not terminate for infinite-sized collections.

  • returns
    • a set containing all elements of this traversable or iterator.
  • Definition Classes
    • TraversableOnce → GenTraversableOnce

(defined at scala.collection.TraversableOnce)

Value Members From scala.collection.generic.GenericTraversableTemplate

def flatten[B](implicit asTraversable: (A) ⇒ GenTraversableOnce[B]): Vector[B]

[use case]

Converts this vector of traversable collections into a vector formed by the elements of these traversable collections.

The resulting collection’s type will be guided by the static type of vector. For example:

val xs = List(
           Set(1, 2, 3),
           Set(1, 2, 3)
         ).flatten
// xs == List(1, 2, 3, 1, 2, 3)

val ys = Set(
           List(1, 2, 3),
           List(3, 2, 1)
         ).flatten
// ys == Set(1, 2, 3)
  • B
    • the type of the elements of each traversable collection.
  • returns
    • a new vector resulting from concatenating all element vectors.
  • Definition Classes
    • GenericTraversableTemplate

(defined at scala.collection.generic.GenericTraversableTemplate)

def genericBuilder[B]: Builder[B, Vector[B]]

The generic builder that builds instances of Traversable at arbitrary element types.

  • Definition Classes
    • GenericTraversableTemplate

(defined at scala.collection.generic.GenericTraversableTemplate)

def newBuilder: Builder[A, Vector[A]]

The builder that builds instances of type Traversable[A]

  • Attributes
    • protected[this]
  • Definition Classes
    • GenericTraversableTemplate → HasNewBuilder

(defined at scala.collection.generic.GenericTraversableTemplate)

def transpose[B](implicit asTraversable: (A) ⇒ GenTraversableOnce[B]): Vector[Vector[B]]

Transposes this collection of traversable collections into a collection of collections.

The resulting collection’s type will be guided by the static type of collection. For example:

val xs = List(
           Set(1, 2, 3),
           Set(4, 5, 6)).transpose
// xs == List(
//         List(1, 4),
//         List(2, 5),
//         List(3, 6))

val ys = Vector(
           List(1, 2, 3),
           List(4, 5, 6)).transpose
// ys == Vector(
//         Vector(1, 4),
//         Vector(2, 5),
//         Vector(3, 6))
  • B
    • the type of the elements of each traversable collection.
  • asTraversable
    • an implicit conversion which asserts that the element type of this collection is a Traversable .
  • returns
    • a two-dimensional collection of collections which has as n th row the n th column of this collection.
  • Definition Classes
    • GenericTraversableTemplate
  • Annotations
    • @migration
  • Migration
    • (Changed in version 2.9.0) transpose throws an IllegalArgumentException if collections are not uniformly sized.
  • Exceptions thrown
    • IllegalArgumentException if all collections in this collection are not of the same size.

(defined at scala.collection.generic.GenericTraversableTemplate)

def unzip3[A1, A2, A3](implicit asTriple: (A) ⇒ (A1, A2, A3)): (Vector[A1], Vector[A2], Vector[A3])

Converts this collection of triples into three collections of the first, second, and third element of each triple.

val xs = Traversable(
           (1, "one", '1'),
           (2, "two", '2'),
           (3, "three", '3')).unzip3
// xs == (Traversable(1, 2, 3),
//        Traversable(one, two, three),
//        Traversable(1, 2, 3))
  • A1
    • the type of the first member of the element triples
  • A2
    • the type of the second member of the element triples
  • A3
    • the type of the third member of the element triples
  • asTriple
    • an implicit conversion which asserts that the element type of this collection is a triple.
  • returns
    • a triple of collections, containing the first, second, respectively third member of each element triple of this collection.
  • Definition Classes
    • GenericTraversableTemplate

(defined at scala.collection.generic.GenericTraversableTemplate)

def unzip[A1, A2](implicit asPair: (A) ⇒ (A1, A2)): (Vector[A1], Vector[A2])

Converts this collection of pairs into two collections of the first and second half of each pair.

val xs = Traversable(
           (1, "one"),
           (2, "two"),
           (3, "three")).unzip
// xs == (Traversable(1, 2, 3),
//        Traversable(one, two, three))
  • A1
    • the type of the first half of the element pairs
  • A2
    • the type of the second half of the element pairs
  • asPair
    • an implicit conversion which asserts that the element type of this collection is a pair.
  • returns
    • a pair of collections, containing the first, respectively second half of each element pair of this collection.
  • Definition Classes
    • GenericTraversableTemplate

(defined at scala.collection.generic.GenericTraversableTemplate)

Value Members From scala.collection.immutable.IndexedSeq

def seq: IndexedSeq[A]

A version of this collection with all of the operations implemented sequentially (i.e., in a single-threaded manner).

This method returns a reference to this collection. In parallel collections, it is redefined to return a sequential implementation of this collection. In both cases, it has O(1) complexity.

  • returns
    • a sequential view of the collection.
  • Definition Classes
    • IndexedSeq → IndexedSeq → IndexedSeqLike → Seq → Seq → GenSeq → GenSeqLike → Iterable → Iterable → GenIterable → Traversable → Traversable → GenTraversable → Parallelizable → TraversableOnce → GenTraversableOnce

(defined at scala.collection.immutable.IndexedSeq)

def toIndexedSeq: IndexedSeq[A]

Returns this immutable sequence as an indexed sequence.

A new indexed sequence will not be built; lazy collections will stay lazy.

  • returns
    • an indexed sequence containing all elements of this immutable sequence.
  • Definition Classes
    • IndexedSeq → TraversableOnce → GenTraversableOnce
  • Annotations
    • @ deprecatedOverriding (message =…, since = “2.11.0”)

(defined at scala.collection.immutable.IndexedSeq)

Value Members From scala.collection.immutable.Seq

def toSeq: Seq[A]

Converts this immutable sequence to a sequence.

Note: will not terminate for infinite-sized collections.

A new collection will not be built; in particular, lazy sequences will stay lazy.

  • returns
    • a sequence containing all elements of this immutable sequence.
  • Definition Classes
    • Seq → SeqLike → GenSeqLike → TraversableOnce → GenTraversableOnce

(defined at scala.collection.immutable.Seq)

Value Members From scala.collection.immutable.Vector

def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

Returns a new vector containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the vector is the most specific superclass encompassing the element types of the two operands.

Example:

scala> val a = List(1)
a: List[Int] = List(1)

scala> val b = List(2)
b: List[Int] = List(2)

scala> val c = a ++ b
c: List[Int] = List(1, 2)

scala> val d = List('a')
d: List[Char] = List(a)

scala> val e = c ++ d
e: List[AnyVal] = List(1, 2, a)
  • B
    • the element type of the returned collection.
  • that
    • the traversable to append.
  • returns
    • a new vector which contains all elements of this vector followed by all elements of that .
  • Definition Classes
    • Vector → TraversableLike → GenTraversableLike

(defined at scala.collection.immutable.Vector)

def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

A copy of the vector with an element prepended.

Note that :-ending operators are right associative (see example). A mnemonic for +: vs. :+ is: the COLon goes on the COLlection side.

Also, the original vector is not modified, so you will want to capture the result.

Example:

scala> val x = List(1)
x: List[Int] = List(1)

scala> val y = 2 +: x
y: List[Int] = List(2, 1)

scala> println(x)
List(1)
  • elem
    • the prepended element
  • returns
    • a new vector consisting of elem followed by all elements of this vector.
  • Definition Classes
    • Vector → SeqLike → GenSeqLike

(defined at scala.collection.immutable.Vector)

def :+[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

A copy of this vector with an element appended.

A mnemonic for +: vs. :+ is: the COLon goes on the COLlection side.

Example:

scala> val a = List(1)
a: List[Int] = List(1)

scala> val b = a :+ 2
b: List[Int] = List(1, 2)

scala> println(a)
List(1)
  • elem
    • the appended element
  • returns
    • a new vector consisting of all elements of this vector followed by elem .
  • Definition Classes
    • Vector → SeqLike → GenSeqLike

(defined at scala.collection.immutable.Vector)

def apply(index: Int): A

Selects an element by its index in the vector.

Example:

scala> val x = List(1, 2, 3, 4, 5)
x: List[Int] = List(1, 2, 3, 4, 5)

scala> x(3)
res1: Int = 4
  • returns
    • the element of this vector at index idx , where 0 indicates the first element.
  • Definition Classes
    • Vector → SeqLike → GenSeqLike → Function1
  • Exceptions thrown
    • IndexOutOfBoundsException if idx does not satisfy 0 <= idx < length .

(defined at scala.collection.immutable.Vector)

def companion: GenericCompanion[Vector]

The factory companion object that builds instances of class Vector . (or its Iterable superclass where class Vector is not a Seq .)

  • Definition Classes
    • Vector → IndexedSeq → IndexedSeq → Seq → Iterable → Traversable → Seq → GenSeq → Iterable → GenIterable → Traversable → GenTraversable → GenericTraversableTemplate

(defined at scala.collection.immutable.Vector)

def drop(n: Int): Vector[A]

Selects all elements except first n ones.

  • n
    • the number of elements to drop from this vector.
  • returns
    • a vector consisting of all elements of this vector except the first n ones, or else the empty vector, if this vector has less than n elements.
  • Definition Classes
    • Vector → IterableLike → TraversableLike → GenTraversableLike

(defined at scala.collection.immutable.Vector)

def dropRight(n: Int): Vector[A]

Selects all elements except last n ones.

  • n
    • The number of elements to take
  • returns
    • a vector consisting of all elements of this vector except the last n ones, or else the empty vector, if this vector has less than n elements.
  • Definition Classes
    • Vector → IterableLike

(defined at scala.collection.immutable.Vector)

def init: Vector[A]

Selects all elements except the last.

  • returns
    • a vector consisting of all elements of this vector except the last one.
  • Definition Classes
    • Vector → TraversableLike → GenTraversableLike
  • Exceptions thrown
    • UnsupportedOperationException if the vector is empty.

(defined at scala.collection.immutable.Vector)

def iterator: VectorIterator[A]

Creates a new iterator over all elements contained in this iterable object.

  • returns
    • the new iterator
  • Definition Classes
    • Vector → IndexedSeqLike → IterableLike → GenIterableLike

(defined at scala.collection.immutable.Vector)

def lengthCompare(len: Int): Int

Compares the length of this vector to a test value.

  • len
    • the test value that gets compared with the length.
  • returns
    • A value x where
    x <  0       if this.length <  len
    x == 0       if this.length == len
    x >  0       if this.length >  len
    
The method as implemented here does not call `length` directly; its running
time is `O(length min len)` instead of `O(length)` . The method should be
overwritten if computing `length` is cheap.
  • Definition Classes
    • Vector → SeqLike

(defined at scala.collection.immutable.Vector)

def par: ParVector[A]

Returns a parallel implementation of this collection.

For most collection types, this method creates a new parallel collection by copying all the elements. For these collection, par takes linear time. Mutable collections in this category do not produce a mutable parallel collection that has the same underlying dataset, so changes in one collection will not be reflected in the other one.

Specific collections (e.g. ParArray or mutable.ParHashMap ) override this default behaviour by creating a parallel collection which shares the same underlying dataset. For these collections, par takes constant or sublinear time.

All parallel collections return a reference to themselves.

  • returns
    • a parallel implementation of this collection
  • Definition Classes
    • Vector → CustomParallelizable → Parallelizable

(defined at scala.collection.immutable.Vector)

def slice(from: Int, until: Int): Vector[A]

Selects an interval of elements. The returned collection is made up of all elements x which satisfy the invariant:

from <= indexOf(x) < until
  • returns
    • a vector containing the elements greater than or equal to index from extending up to (but not including) index until of this vector.
  • Definition Classes
    • Vector → IterableLike → TraversableLike → GenTraversableLike

(defined at scala.collection.immutable.Vector)

def splitAt(n: Int): (Vector[A], Vector[A])

Splits this vector into two at a given position. Note: c splitAt n is equivalent to (but possibly more efficient than) (c take n, c drop n) .

  • n
    • the position at which to split.
  • returns
    • a pair of vectors consisting of the first n elements of this vector, and the other elements.
  • Definition Classes
    • Vector → TraversableLike → GenTraversableLike

(defined at scala.collection.immutable.Vector)

def tail: Vector[A]

Selects all elements except the first.

  • returns
    • a vector consisting of all elements of this vector except the first one.
  • Definition Classes
    • Vector → TraversableLike → GenTraversableLike
  • Exceptions thrown
    • UnsupportedOperationException if the vector is empty.

(defined at scala.collection.immutable.Vector)

def take(n: Int): Vector[A]

Selects first n elements.

  • n
    • the number of elements to take from this vector.
  • returns
    • a vector consisting only of the first n elements of this vector, or else the whole vector, if it has less than n elements.
  • Definition Classes
    • Vector → IterableLike → TraversableLike → GenTraversableLike

(defined at scala.collection.immutable.Vector)

def takeRight(n: Int): Vector[A]

Selects last n elements.

  • n
    • the number of elements to take
  • returns
    • a vector consisting only of the last n elements of this vector, or else the whole vector, if it has less than n elements.
  • Definition Classes
    • Vector → IterableLike

(defined at scala.collection.immutable.Vector)

def toVector: Vector[A]

Converts this vector to a Vector.

  • returns
    • a vector containing all elements of this vector.
  • Definition Classes
    • Vector → TraversableOnce → GenTraversableOnce

(defined at scala.collection.immutable.Vector)

def updated[B >: A, That](index: Int, elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That

[use case]

A copy of this vector with one single replaced element.

  • index
    • the position of the replacement
  • elem
    • the replacing element
  • returns
    • a copy of this vector with the element at position index replaced by elem .
  • Definition Classes
    • Vector → SeqLike → GenSeqLike

(defined at scala.collection.immutable.Vector)

Value Members From Implicit scala.Predef.SeqCharSequence

def charAt(index: Int): Char

  • Implicit information
    • This member is added by an implicit conversion from Vector [A] to SeqCharSequence performed by method SeqCharSequence in scala.Predef. This conversion will take place only if A is a subclass of Char (A <: Char).
  • Definition Classes
    • SeqCharSequence → CharSequence

(added by implicit convertion: scala.Predef.SeqCharSequence)

def chars(): IntStream

  • Implicit information
    • This member is added by an implicit conversion from Vector [A] to SeqCharSequence performed by method SeqCharSequence in scala.Predef. This conversion will take place only if A is a subclass of Char (A <: Char).
  • Definition Classes
    • CharSequence

(added by implicit convertion: scala.Predef.SeqCharSequence)

def codePoints(): IntStream

  • Implicit information
    • This member is added by an implicit conversion from Vector [A] to SeqCharSequence performed by method SeqCharSequence in scala.Predef. This conversion will take place only if A is a subclass of Char (A <: Char).
  • Definition Classes
    • CharSequence

(added by implicit convertion: scala.Predef.SeqCharSequence)

def subSequence(start: Int, end: Int): CharSequence

  • Implicit information
    • This member is added by an implicit conversion from Vector [A] to SeqCharSequence performed by method SeqCharSequence in scala.Predef. This conversion will take place only if A is a subclass of Char (A <: Char).
  • Definition Classes
    • SeqCharSequence → CharSequence

(added by implicit convertion: scala.Predef.SeqCharSequence)


Value Members From Implicit scala.collection.parallel.CollectionsHaveToParArray ——————————————————————————–

def toParArray: ParArray[T]

  • Implicit information
    • This member is added by an implicit conversion from Vector [A] to CollectionsHaveToParArray [Vector [A], T] performed by method CollectionsHaveToParArray in scala.collection.parallel. This conversion will take place only if an implicit value of type (Vector [A]) ⇒ GenTraversableOnce [T] is in scope.
  • Definition Classes
    • CollectionsHaveToParArray (added by implicit convertion: scala.collection.parallel.CollectionsHaveToParArray)

Full Source:

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package collection
package immutable

import scala.annotation.unchecked.uncheckedVariance
import scala.compat.Platform
import scala.collection.generic._
import scala.collection.mutable.{Builder, ReusableBuilder}
import scala.collection.parallel.immutable.ParVector

/** Companion object to the Vector class
 */
object Vector extends IndexedSeqFactory[Vector] {
  def newBuilder[A]: Builder[A, Vector[A]] = new VectorBuilder[A]
  implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, Vector[A]] =
    ReusableCBF.asInstanceOf[GenericCanBuildFrom[A]]
  private[immutable] val NIL = new Vector[Nothing](0, 0, 0)
  override def empty[A]: Vector[A] = NIL
  
  // Constants governing concat strategy for performance
  private final val Log2ConcatFaster = 5
  private final val TinyAppendFaster = 2
}

// in principle, most members should be private. however, access privileges must
// be carefully chosen to not prevent method inlining

/** Vector is a general-purpose, immutable data structure.  It provides random access and updates
 *  in effectively constant time, as well as very fast append and prepend.  Because vectors strike
 *  a good balance between fast random selections and fast random functional updates, they are
 *  currently the default implementation of immutable indexed sequences.  It is backed by a little
 *  endian bit-mapped vector trie with a branching factor of 32.  Locality is very good, but not
 *  contiguous, which is good for very large sequences.
 *
 *  @see [[http://docs.scala-lang.org/overviews/collections/concrete-immutable-collection-classes.html#vectors "Scala's Collection Library overview"]]
 *  section on `Vectors` for more information.
 *
 *  @tparam A the element type
 *
 *  @define Coll `Vector`
 *  @define coll vector
 *  @define thatinfo the class of the returned collection. In the standard library configuration,
 *    `That` is always `Vector[B]` because an implicit of type `CanBuildFrom[Vector, B, That]`
 *    is defined in object `Vector`.
 *  @define bfinfo an implicit value of class `CanBuildFrom` which determines the
 *    result class `That` from the current representation type `Repr`
 *    and the new element type `B`. This is usually the `canBuildFrom` value
 *    defined in object `Vector`.
 *  @define orderDependent
 *  @define orderDependentFold
 *  @define mayNotTerminateInf
 *  @define willNotTerminateInf
 */
final class Vector[+A] private[immutable] (private[collection] val startIndex: Int, private[collection] val endIndex: Int, focus: Int)
extends AbstractSeq[A]
   with IndexedSeq[A]
   with GenericTraversableTemplate[A, Vector]
   with IndexedSeqLike[A, Vector[A]]
   with VectorPointer[A @uncheckedVariance]
   with Serializable
   with CustomParallelizable[A, ParVector[A]]
{ self =>

override def companion: GenericCompanion[Vector] = Vector

  //assert(startIndex >= 0, startIndex+"<0")
  //assert(startIndex <= endIndex, startIndex+">"+endIndex)
  //assert(focus >= 0, focus+"<0")
  //assert(focus <= endIndex, focus+">"+endIndex)

  private[immutable] var dirty = false

  def length = endIndex - startIndex

  override def par = new ParVector(this)

  override def toVector: Vector[A] = this

  override def lengthCompare(len: Int): Int = length - len

  private[collection] final def initIterator[B >: A](s: VectorIterator[B]) {
    s.initFrom(this)
    if (dirty) s.stabilize(focus)
    if (s.depth > 1) s.gotoPos(startIndex, startIndex ^ focus)
  }

  override def iterator: VectorIterator[A] = {
    val s = new VectorIterator[A](startIndex, endIndex)
    initIterator(s)
    s
  }


  // can still be improved
  override /*SeqLike*/
  def reverseIterator: Iterator[A] = new AbstractIterator[A] {
    private var i = self.length
    def hasNext: Boolean = 0 < i
    def next(): A =
      if (0 < i) {
        i -= 1
        self(i)
      } else Iterator.empty.next()
  }

  // TODO: reverse

  // TODO: check performance of foreach/map etc. should override or not?
  // Ideally, clients will inline calls to map all the way down, including the iterator/builder methods.
  // In principle, escape analysis could even remove the iterator/builder allocations and do it
  // with local variables exclusively. But we're not quite there yet ...

  def apply(index: Int): A = {
    val idx = checkRangeConvert(index)
    //println("get elem: "+index + "/"+idx + "(focus:" +focus+" xor:"+(idx^focus)+" depth:"+depth+")")
    getElem(idx, idx ^ focus)
  }

  private def checkRangeConvert(index: Int) = {
    val idx = index + startIndex
    if (0 <= index && idx < endIndex)
      idx
    else
      throw new IndexOutOfBoundsException(index.toString)
  }

  // If we have a default builder, there are faster ways to perform some operations
  @inline private[this] def isDefaultCBF[A, B, That](bf: CanBuildFrom[Vector[A], B, That]): Boolean =
    (bf eq IndexedSeq.ReusableCBF) || (bf eq collection.immutable.Seq.ReusableCBF) || (bf eq collection.Seq.ReusableCBF)
    
  // SeqLike api

  override def updated[B >: A, That](index: Int, elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That =
    if (isDefaultCBF[A, B, That](bf))
      updateAt(index, elem).asInstanceOf[That] // ignore bf--it will just give a Vector, and slowly
    else super.updated(index, elem)(bf)

  override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That =
    if (isDefaultCBF[A, B, That](bf))
      appendFront(elem).asInstanceOf[That] // ignore bf--it will just give a Vector, and slowly
    else super.+:(elem)(bf)

  override def :+[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Vector[A], B, That]): That =
    if (isDefaultCBF(bf))
      appendBack(elem).asInstanceOf[That] // ignore bf--it will just give a Vector, and slowly
    else super.:+(elem)(bf)

  override def take(n: Int): Vector[A] = {
    if (n <= 0)
      Vector.empty
    else if (startIndex < endIndex - n)
      dropBack0(startIndex + n)
    else
      this
  }

  override def drop(n: Int): Vector[A] = {
    if (n <= 0)
      this
    else if (startIndex < endIndex - n)
      dropFront0(startIndex + n)
    else
      Vector.empty
  }

  override def takeRight(n: Int): Vector[A] = {
    if (n <= 0)
      Vector.empty
    else if (endIndex - n > startIndex)
      dropFront0(endIndex - n)
    else
      this
  }

  override def dropRight(n: Int): Vector[A] = {
    if (n <= 0)
      this
    else if (endIndex - n > startIndex)
      dropBack0(endIndex - n)
    else
      Vector.empty
  }

  override /*IterableLike*/ def head: A = {
    if (isEmpty) throw new UnsupportedOperationException("empty.head")
    apply(0)
  }

  override /*TraversableLike*/ def tail: Vector[A] = {
    if (isEmpty) throw new UnsupportedOperationException("empty.tail")
    drop(1)
  }

  override /*TraversableLike*/ def last: A = {
    if (isEmpty) throw new UnsupportedOperationException("empty.last")
    apply(length-1)
  }

  override /*TraversableLike*/ def init: Vector[A] = {
    if (isEmpty) throw new UnsupportedOperationException("empty.init")
    dropRight(1)
  }

  override /*IterableLike*/ def slice(from: Int, until: Int): Vector[A] =
    take(until).drop(from)

  override /*IterableLike*/ def splitAt(n: Int): (Vector[A], Vector[A]) = (take(n), drop(n))


  // concat (suboptimal but avoids worst performance gotchas)
  override def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Vector[A], B, That]): That = {
    if (isDefaultCBF(bf)) {
      // We are sure we will create a Vector, so let's do it efficiently
      import Vector.{Log2ConcatFaster, TinyAppendFaster}
      if (that.isEmpty) this.asInstanceOf[That]
      else {
        val again = if (!that.isTraversableAgain) that.toVector else that.seq
        again.size match {
          // Often it's better to append small numbers of elements (or prepend if RHS is a vector)
          case n if n <= TinyAppendFaster || n < (this.size >> Log2ConcatFaster) => 
            var v: Vector[B] = this
            for (x <- again) v = v :+ x
            v.asInstanceOf[That]
          case n if this.size < (n >> Log2ConcatFaster) && again.isInstanceOf[Vector[_]] =>
            var v = again.asInstanceOf[Vector[B]]
            val ri = this.reverseIterator
            while (ri.hasNext) v = ri.next +: v
            v.asInstanceOf[That]
          case _ => super.++(again)
        }
      }
    }
    else super.++(that.seq)
  }



  // semi-private api

  private[immutable] def updateAt[B >: A](index: Int, elem: B): Vector[B] = {
    val idx = checkRangeConvert(index)
    val s = new Vector[B](startIndex, endIndex, idx)
    s.initFrom(this)
    s.dirty = dirty
    s.gotoPosWritable(focus, idx, focus ^ idx)  // if dirty commit changes; go to new pos and prepare for writing
    s.display0(idx & 0x1f) = elem.asInstanceOf[AnyRef]
    s
  }


  private def gotoPosWritable(oldIndex: Int, newIndex: Int, xor: Int) = if (dirty) {
    gotoPosWritable1(oldIndex, newIndex, xor)
  } else {
    gotoPosWritable0(newIndex, xor)
    dirty = true
  }

  private def gotoFreshPosWritable(oldIndex: Int, newIndex: Int, xor: Int) = if (dirty) {
    gotoFreshPosWritable1(oldIndex, newIndex, xor)
  } else {
    gotoFreshPosWritable0(oldIndex, newIndex, xor)
    dirty = true
  }

  private[immutable] def appendFront[B>:A](value: B): Vector[B] = {
    if (endIndex != startIndex) {
      val blockIndex = (startIndex - 1) & ~31
      val lo = (startIndex - 1) & 31

      if (startIndex != blockIndex + 32) {
        val s = new Vector(startIndex - 1, endIndex, blockIndex)
        s.initFrom(this)
        s.dirty = dirty
        s.gotoPosWritable(focus, blockIndex, focus ^ blockIndex)
        s.display0(lo) = value.asInstanceOf[AnyRef]
        s
      } else {

        val freeSpace = ((1<<5*(depth)) - endIndex) // free space at the right given the current tree-structure depth
        val shift = freeSpace & ~((1<<5*(depth-1))-1) // number of elements by which we'll shift right (only move at top level)
        val shiftBlocks = freeSpace >>> 5*(depth-1) // number of top-level blocks

        //println("----- appendFront " + value + " at " + (startIndex - 1) + " reached block start")
        if (shift != 0) {
          // case A: we can shift right on the top level
          debug()
          //println("shifting right by " + shiftBlocks + " at level " + (depth-1) + " (had "+freeSpace+" free space)")

          if (depth > 1) {
            val newBlockIndex = blockIndex + shift
            val newFocus = focus + shift
            val s = new Vector(startIndex - 1 + shift, endIndex + shift, newBlockIndex)
            s.initFrom(this)
            s.dirty = dirty
            s.shiftTopLevel(0, shiftBlocks) // shift right by n blocks
            s.debug()
            s.gotoFreshPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex) // maybe create pos; prepare for writing
            s.display0(lo) = value.asInstanceOf[AnyRef]
            //assert(depth == s.depth)
            s
          } else {
            val newBlockIndex = blockIndex + 32
            val newFocus = focus

            //assert(newBlockIndex == 0)
            //assert(newFocus == 0)

            val s = new Vector(startIndex - 1 + shift, endIndex + shift, newBlockIndex)
            s.initFrom(this)
            s.dirty = dirty
            s.shiftTopLevel(0, shiftBlocks) // shift right by n elements
            s.gotoPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex) // prepare for writing
            s.display0(shift-1) = value.asInstanceOf[AnyRef]
            s.debug()
            s
          }
        } else if (blockIndex < 0) {
          // case B: we need to move the whole structure
          val move = (1 << 5*(depth+1)) - (1 << 5*(depth))
          //println("moving right by " + move + " at level " + (depth-1) + " (had "+freeSpace+" free space)")

          val newBlockIndex = blockIndex + move
          val newFocus = focus + move


          val s = new Vector(startIndex - 1 + move, endIndex + move, newBlockIndex)
          s.initFrom(this)
          s.dirty = dirty
          s.debug()
          s.gotoFreshPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex) // could optimize: we know it will create a whole branch
          s.display0(lo) = value.asInstanceOf[AnyRef]
          s.debug()
          //assert(s.depth == depth+1)
          s
        } else {
          val newBlockIndex = blockIndex
          val newFocus = focus

          val s = new Vector(startIndex - 1, endIndex, newBlockIndex)
          s.initFrom(this)
          s.dirty = dirty
          s.gotoFreshPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex)
          s.display0(lo) = value.asInstanceOf[AnyRef]
          //assert(s.depth == depth)
          s
        }

      }
    } else {
      // empty vector, just insert single element at the back
      val elems = new Array[AnyRef](32)
      elems(31) = value.asInstanceOf[AnyRef]
      val s = new Vector(31,32,0)
      s.depth = 1
      s.display0 = elems
      s
    }
  }

  private[immutable] def appendBack[B>:A](value: B): Vector[B] = {
//    //println("------- append " + value)
//    debug()
    if (endIndex != startIndex) {
      val blockIndex = endIndex & ~31
      val lo = endIndex & 31

      if (endIndex != blockIndex) {
        //println("will make writable block (from "+focus+") at: " + blockIndex)
        val s = new Vector(startIndex, endIndex + 1, blockIndex)
        s.initFrom(this)
        s.dirty = dirty
        s.gotoPosWritable(focus, blockIndex, focus ^ blockIndex)
        s.display0(lo) = value.asInstanceOf[AnyRef]
        s
      } else {
        val shift = startIndex & ~((1<<5*(depth-1))-1)
        val shiftBlocks = startIndex >>> 5*(depth-1)

        //println("----- appendBack " + value + " at " + endIndex + " reached block end")

        if (shift != 0) {
          debug()
          //println("shifting left by " + shiftBlocks + " at level " + (depth-1) + " (had "+startIndex+" free space)")
          if (depth > 1) {
            val newBlockIndex = blockIndex - shift
            val newFocus = focus - shift
            val s = new Vector(startIndex - shift, endIndex + 1 - shift, newBlockIndex)
            s.initFrom(this)
            s.dirty = dirty
            s.shiftTopLevel(shiftBlocks, 0) // shift left by n blocks
            s.debug()
            s.gotoFreshPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex)
            s.display0(lo) = value.asInstanceOf[AnyRef]
            s.debug()
            //assert(depth == s.depth)
            s
          } else {
            val newBlockIndex = blockIndex - 32
            val newFocus = focus

            //assert(newBlockIndex == 0)
            //assert(newFocus == 0)

            val s = new Vector(startIndex - shift, endIndex + 1 - shift, newBlockIndex)
            s.initFrom(this)
            s.dirty = dirty
            s.shiftTopLevel(shiftBlocks, 0) // shift right by n elements
            s.gotoPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex)
            s.display0(32 - shift) = value.asInstanceOf[AnyRef]
            s.debug()
            s
          }
        } else {
          val newBlockIndex = blockIndex
          val newFocus = focus

          val s = new Vector(startIndex, endIndex + 1, newBlockIndex)
          s.initFrom(this)
          s.dirty = dirty
          s.gotoFreshPosWritable(newFocus, newBlockIndex, newFocus ^ newBlockIndex)
          s.display0(lo) = value.asInstanceOf[AnyRef]
          //assert(s.depth == depth+1) might or might not create new level!
          if (s.depth == depth+1) {
            //println("creating new level " + s.depth + " (had "+0+" free space)")
            s.debug()
          }
          s
        }
      }
    } else {
      val elems = new Array[AnyRef](32)
      elems(0) = value.asInstanceOf[AnyRef]
      val s = new Vector(0,1,0)
      s.depth = 1
      s.display0 = elems
      s
    }
  }


  // low-level implementation (needs cleanup, maybe move to util class)

  private def shiftTopLevel(oldLeft: Int, newLeft: Int) = (depth - 1) match {
    case 0 =>
      display0 = copyRange(display0, oldLeft, newLeft)
    case 1 =>
      display1 = copyRange(display1, oldLeft, newLeft)
    case 2 =>
      display2 = copyRange(display2, oldLeft, newLeft)
    case 3 =>
      display3 = copyRange(display3, oldLeft, newLeft)
    case 4 =>
      display4 = copyRange(display4, oldLeft, newLeft)
    case 5 =>
      display5 = copyRange(display5, oldLeft, newLeft)
  }

  private def zeroLeft(array: Array[AnyRef], index: Int): Unit = {
    var i = 0; while (i < index) { array(i) = null; i+=1 }
  }

  private def zeroRight(array: Array[AnyRef], index: Int): Unit = {
    var i = index; while (i < array.length) { array(i) = null; i+=1 }
  }

  private def copyLeft(array: Array[AnyRef], right: Int): Array[AnyRef] = {
//    if (array eq null)
//      println("OUCH!!! " + right + "/" + depth + "/"+startIndex + "/" + endIndex + "/" + focus)
    val a2 = new Array[AnyRef](array.length)
    Platform.arraycopy(array, 0, a2, 0, right)
    a2
  }
  private def copyRight(array: Array[AnyRef], left: Int): Array[AnyRef] = {
    val a2 = new Array[AnyRef](array.length)
    Platform.arraycopy(array, left, a2, left, a2.length - left)
    a2
  }

  private def preClean(depth: Int) = {
    this.depth = depth
    (depth - 1) match {
      case 0 =>
        display1 = null
        display2 = null
        display3 = null
        display4 = null
        display5 = null
      case 1 =>
        display2 = null
        display3 = null
        display4 = null
        display5 = null
      case 2 =>
        display3 = null
        display4 = null
        display5 = null
      case 3 =>
        display4 = null
        display5 = null
      case 4 =>
        display5 = null
      case 5 =>
    }
  }

  // requires structure is at index cutIndex and writable at level 0
  private def cleanLeftEdge(cutIndex: Int) = {
    if (cutIndex < (1 << 5)) {
      zeroLeft(display0, cutIndex)
    } else
    if (cutIndex < (1 << 10)) {
      zeroLeft(display0, cutIndex & 0x1f)
      display1 = copyRight(display1, (cutIndex >>>  5))
    } else
    if (cutIndex < (1 << 15)) {
      zeroLeft(display0, cutIndex & 0x1f)
      display1 = copyRight(display1, (cutIndex >>>  5) & 0x1f)
      display2 = copyRight(display2, (cutIndex >>> 10))
    } else
    if (cutIndex < (1 << 20)) {
      zeroLeft(display0, cutIndex & 0x1f)
      display1 = copyRight(display1, (cutIndex >>>  5) & 0x1f)
      display2 = copyRight(display2, (cutIndex >>> 10) & 0x1f)
      display3 = copyRight(display3, (cutIndex >>> 15))
    } else
    if (cutIndex < (1 << 25)) {
      zeroLeft(display0, cutIndex & 0x1f)
      display1 = copyRight(display1, (cutIndex >>>  5) & 0x1f)
      display2 = copyRight(display2, (cutIndex >>> 10) & 0x1f)
      display3 = copyRight(display3, (cutIndex >>> 15) & 0x1f)
      display4 = copyRight(display4, (cutIndex >>> 20))
    } else
    if (cutIndex < (1 << 30)) {
      zeroLeft(display0, cutIndex & 0x1f)
      display1 = copyRight(display1, (cutIndex >>>  5) & 0x1f)
      display2 = copyRight(display2, (cutIndex >>> 10) & 0x1f)
      display3 = copyRight(display3, (cutIndex >>> 15) & 0x1f)
      display4 = copyRight(display4, (cutIndex >>> 20) & 0x1f)
      display5 = copyRight(display5, (cutIndex >>> 25))
    } else {
      throw new IllegalArgumentException()
    }
  }

  // requires structure is writable and at index cutIndex
  private def cleanRightEdge(cutIndex: Int) = {

    // we're actually sitting one block left if cutIndex lies on a block boundary
    // this means that we'll end up erasing the whole block!!

    if (cutIndex <= (1 << 5)) {
      zeroRight(display0, cutIndex)
    } else
    if (cutIndex <= (1 << 10)) {
      zeroRight(display0, ((cutIndex-1) & 0x1f) + 1)
      display1 = copyLeft(display1, (cutIndex >>>  5))
    } else
    if (cutIndex <= (1 << 15)) {
      zeroRight(display0, ((cutIndex-1) & 0x1f) + 1)
      display1 = copyLeft(display1, (((cutIndex-1) >>>  5) & 0x1f) + 1)
      display2 = copyLeft(display2, (cutIndex >>> 10))
    } else
    if (cutIndex <= (1 << 20)) {
      zeroRight(display0, ((cutIndex-1) & 0x1f) + 1)
      display1 = copyLeft(display1, (((cutIndex-1) >>>  5) & 0x1f) + 1)
      display2 = copyLeft(display2, (((cutIndex-1) >>> 10) & 0x1f) + 1)
      display3 = copyLeft(display3, (cutIndex >>> 15))
    } else
    if (cutIndex <= (1 << 25)) {
      zeroRight(display0, ((cutIndex-1) & 0x1f) + 1)
      display1 = copyLeft(display1, (((cutIndex-1) >>>  5) & 0x1f) + 1)
      display2 = copyLeft(display2, (((cutIndex-1) >>> 10) & 0x1f) + 1)
      display3 = copyLeft(display3, (((cutIndex-1) >>> 15) & 0x1f) + 1)
      display4 = copyLeft(display4, (cutIndex >>> 20))
    } else
    if (cutIndex <= (1 << 30)) {
      zeroRight(display0, ((cutIndex-1) & 0x1f) + 1)
      display1 = copyLeft(display1, (((cutIndex-1) >>>  5) & 0x1f) + 1)
      display2 = copyLeft(display2, (((cutIndex-1) >>> 10) & 0x1f) + 1)
      display3 = copyLeft(display3, (((cutIndex-1) >>> 15) & 0x1f) + 1)
      display4 = copyLeft(display4, (((cutIndex-1) >>> 20) & 0x1f) + 1)
      display5 = copyLeft(display5, (cutIndex >>> 25))
    } else {
      throw new IllegalArgumentException()
    }
  }

  private def requiredDepth(xor: Int) = {
    if (xor < (1 <<  5)) 1
    else if (xor < (1 << 10)) 2
    else if (xor < (1 << 15)) 3
    else if (xor < (1 << 20)) 4
    else if (xor < (1 << 25)) 5
    else if (xor < (1 << 30)) 6
    else throw new IllegalArgumentException()
  }

  private def dropFront0(cutIndex: Int): Vector[A] = {
    val blockIndex = cutIndex & ~31
    val xor = cutIndex ^ (endIndex - 1)
    val d = requiredDepth(xor)
    val shift = (cutIndex & ~((1 << (5*d))-1))

    //println("cut front at " + cutIndex + ".." + endIndex + " (xor: "+xor+" shift: " + shift + " d: " + d +")")

/*
    val s = new Vector(cutIndex-shift, endIndex-shift, blockIndex-shift)
    s.initFrom(this)
    if (s.depth > 1)
      s.gotoPos(blockIndex, focus ^ blockIndex)
    s.depth = d
    s.stabilize(blockIndex-shift)
    s.cleanLeftEdge(cutIndex-shift)
    s
*/

    // need to init with full display iff going to cutIndex requires swapping block at level >= d

    val s = new Vector(cutIndex-shift, endIndex-shift, blockIndex-shift)
    s.initFrom(this)
    s.dirty = dirty
    s.gotoPosWritable(focus, blockIndex, focus ^ blockIndex)
    s.preClean(d)
    s.cleanLeftEdge(cutIndex - shift)
    s
  }

  private def dropBack0(cutIndex: Int): Vector[A] = {
    val blockIndex = (cutIndex - 1) & ~31
    val xor = startIndex ^ (cutIndex - 1)
    val d = requiredDepth(xor)
    val shift = (startIndex & ~((1 << (5*d))-1))

/*
    println("cut back at " + startIndex + ".." + cutIndex + " (xor: "+xor+" d: " + d +")")
    if (cutIndex == blockIndex + 32)
      println("OUCH!!!")
*/
    val s = new Vector(startIndex-shift, cutIndex-shift, blockIndex-shift)
    s.initFrom(this)
    s.dirty = dirty
    s.gotoPosWritable(focus, blockIndex, focus ^ blockIndex)
    s.preClean(d)
    s.cleanRightEdge(cutIndex-shift)
    s
  }

}


class VectorIterator[+A](_startIndex: Int, endIndex: Int)
extends AbstractIterator[A]
   with Iterator[A]
   with VectorPointer[A @uncheckedVariance] {

  private var blockIndex: Int = _startIndex & ~31
  private var lo: Int = _startIndex & 31

  private var endLo = math.min(endIndex - blockIndex, 32)

  def hasNext = _hasNext

  private var _hasNext = blockIndex + lo < endIndex

  def next(): A = {
    if (!_hasNext) throw new NoSuchElementException("reached iterator end")

    val res = display0(lo).asInstanceOf[A]
    lo += 1

    if (lo == endLo) {
      if (blockIndex + lo < endIndex) {
        val newBlockIndex = blockIndex+32
        gotoNextBlockStart(newBlockIndex, blockIndex ^ newBlockIndex)

        blockIndex = newBlockIndex
        endLo = math.min(endIndex - blockIndex, 32)
        lo = 0
      } else {
        _hasNext = false
      }
    }

    res
  }

  private[collection] def remainingElementCount: Int = (endIndex - (blockIndex + lo)) max 0

  /** Creates a new vector which consists of elements remaining in this iterator.
   *  Such a vector can then be split into several vectors using methods like `take` and `drop`.
   */
  private[collection] def remainingVector: Vector[A] = {
    val v = new Vector(blockIndex + lo, endIndex, blockIndex + lo)
    v.initFrom(this)
    v
  }
}

/** A class to build instances of `Vector`.  This builder is reusable. */
final class VectorBuilder[A]() extends ReusableBuilder[A,Vector[A]] with VectorPointer[A @uncheckedVariance] {

  // possible alternative: start with display0 = null, blockIndex = -32, lo = 32
  // to avoid allocating initial array if the result will be empty anyways

  display0 = new Array[AnyRef](32)
  depth = 1

  private var blockIndex = 0
  private var lo = 0

  def += (elem: A): this.type = {
    if (lo >= display0.length) {
      val newBlockIndex = blockIndex+32
      gotoNextBlockStartWritable(newBlockIndex, blockIndex ^ newBlockIndex)
      blockIndex = newBlockIndex
      lo = 0
    }
    display0(lo) = elem.asInstanceOf[AnyRef]
    lo += 1
    this
  }

  override def ++=(xs: TraversableOnce[A]): this.type =
    super.++=(xs)

  def result: Vector[A] = {
    val size = blockIndex + lo
    if (size == 0)
      return Vector.empty
    val s = new Vector[A](0, size, 0) // should focus front or back?
    s.initFrom(this)
    if (depth > 1) s.gotoPos(0, size - 1) // we're currently focused to size - 1, not size!
    s
  }

  def clear(): Unit = {
    display0 = new Array[AnyRef](32)
    depth = 1
    blockIndex = 0
    lo = 0
  }
}



private[immutable] trait VectorPointer[T] {
    private[immutable] var depth: Int = _
    private[immutable] var display0: Array[AnyRef] = _
    private[immutable] var display1: Array[AnyRef] = _
    private[immutable] var display2: Array[AnyRef] = _
    private[immutable] var display3: Array[AnyRef] = _
    private[immutable] var display4: Array[AnyRef] = _
    private[immutable] var display5: Array[AnyRef] = _

    // used
    private[immutable] final def initFrom[U](that: VectorPointer[U]): Unit = initFrom(that, that.depth)

    private[immutable] final def initFrom[U](that: VectorPointer[U], depth: Int) = {
      this.depth = depth
      (depth - 1) match {
        case -1 =>
        case 0 =>
          display0 = that.display0
        case 1 =>
          display1 = that.display1
          display0 = that.display0
        case 2 =>
          display2 = that.display2
          display1 = that.display1
          display0 = that.display0
        case 3 =>
          display3 = that.display3
          display2 = that.display2
          display1 = that.display1
          display0 = that.display0
        case 4 =>
          display4 = that.display4
          display3 = that.display3
          display2 = that.display2
          display1 = that.display1
          display0 = that.display0
        case 5 =>
          display5 = that.display5
          display4 = that.display4
          display3 = that.display3
          display2 = that.display2
          display1 = that.display1
          display0 = that.display0
      }
    }


    // requires structure is at pos oldIndex = xor ^ index
    private[immutable] final def getElem(index: Int, xor: Int): T = {
      if (xor < (1 << 5)) { // level = 0
        display0(index & 31).asInstanceOf[T]
      } else
      if (xor < (1 << 10)) { // level = 1
        display1((index >> 5) & 31).asInstanceOf[Array[AnyRef]](index & 31).asInstanceOf[T]
      } else
      if (xor < (1 << 15)) { // level = 2
        display2((index >> 10) & 31).asInstanceOf[Array[AnyRef]]((index >> 5) & 31).asInstanceOf[Array[AnyRef]](index & 31).asInstanceOf[T]
      } else
      if (xor < (1 << 20)) { // level = 3
        display3((index >> 15) & 31).asInstanceOf[Array[AnyRef]]((index >> 10) & 31).asInstanceOf[Array[AnyRef]]((index >> 5) & 31).asInstanceOf[Array[AnyRef]](index & 31).asInstanceOf[T]
      } else
      if (xor < (1 << 25)) { // level = 4
        display4((index >> 20) & 31).asInstanceOf[Array[AnyRef]]((index >> 15) & 31).asInstanceOf[Array[AnyRef]]((index >> 10) & 31).asInstanceOf[Array[AnyRef]]((index >> 5) & 31).asInstanceOf[Array[AnyRef]](index & 31).asInstanceOf[T]
      } else
      if (xor < (1 << 30)) { // level = 5
        display5((index >> 25) & 31).asInstanceOf[Array[AnyRef]]((index >> 20) & 31).asInstanceOf[Array[AnyRef]]((index >> 15) & 31).asInstanceOf[Array[AnyRef]]((index >> 10) & 31).asInstanceOf[Array[AnyRef]]((index >> 5) & 31).asInstanceOf[Array[AnyRef]](index & 31).asInstanceOf[T]
      } else { // level = 6
        throw new IllegalArgumentException()
      }
    }


    // go to specific position
    // requires structure is at pos oldIndex = xor ^ index,
    // ensures structure is at pos index
    private[immutable] final def gotoPos(index: Int, xor: Int): Unit = {
      if (xor < (1 << 5)) { // level = 0 (could maybe removed)
      } else
      if (xor < (1 << 10)) { // level = 1
        display0 = display1((index >> 5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 15)) { // level = 2
        display1 = display2((index >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = display1((index >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 20)) { // level = 3
        display2 = display3((index >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = display2((index >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = display1((index >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 25)) { // level = 4
        display3 = display4((index >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = display3((index >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = display2((index >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = display1((index >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 30)) { // level = 5
        display4 = display5((index >> 25) & 31).asInstanceOf[Array[AnyRef]]
        display3 = display4((index >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = display3((index >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = display2((index >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = display1((index >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else { // level = 6
        throw new IllegalArgumentException()
      }
    }



    // USED BY ITERATOR

    // xor: oldIndex ^ index
    private[immutable] final def gotoNextBlockStart(index: Int, xor: Int): Unit = { // goto block start pos
      if (xor < (1 << 10)) { // level = 1
        display0 = display1((index >> 5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 15)) { // level = 2
        display1 = display2((index >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = display1(0).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 20)) { // level = 3
        display2 = display3((index >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = display2(0).asInstanceOf[Array[AnyRef]]
        display0 = display1(0).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 25)) { // level = 4
        display3 = display4((index >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = display3(0).asInstanceOf[Array[AnyRef]]
        display1 = display2(0).asInstanceOf[Array[AnyRef]]
        display0 = display1(0).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 30)) { // level = 5
        display4 = display5((index >> 25) & 31).asInstanceOf[Array[AnyRef]]
        display3 = display4(0).asInstanceOf[Array[AnyRef]]
        display2 = display3(0).asInstanceOf[Array[AnyRef]]
        display1 = display2(0).asInstanceOf[Array[AnyRef]]
        display0 = display1(0).asInstanceOf[Array[AnyRef]]
      } else { // level = 6
        throw new IllegalArgumentException()
      }
    }

    // USED BY BUILDER

    // xor: oldIndex ^ index
    private[immutable] final def gotoNextBlockStartWritable(index: Int, xor: Int): Unit = { // goto block start pos
      if (xor < (1 << 10)) { // level = 1
        if (depth == 1) { display1 = new Array(32); display1(0) = display0; depth+=1}
        display0 = new Array(32)
        display1((index >>  5) & 31) = display0
      } else
      if (xor < (1 << 15)) { // level = 2
        if (depth == 2) { display2 = new Array(32); display2(0) = display1; depth+=1}
        display0 = new Array(32)
        display1 = new Array(32)
        display1((index >>  5) & 31) = display0
        display2((index >> 10) & 31) = display1
      } else
      if (xor < (1 << 20)) { // level = 3
        if (depth == 3) { display3 = new Array(32); display3(0) = display2; depth+=1}
        display0 = new Array(32)
        display1 = new Array(32)
        display2 = new Array(32)
        display1((index >>  5) & 31) = display0
        display2((index >> 10) & 31) = display1
        display3((index >> 15) & 31) = display2
      } else
      if (xor < (1 << 25)) { // level = 4
        if (depth == 4) { display4 = new Array(32); display4(0) = display3; depth+=1}
        display0 = new Array(32)
        display1 = new Array(32)
        display2 = new Array(32)
        display3 = new Array(32)
        display1((index >>  5) & 31) = display0
        display2((index >> 10) & 31) = display1
        display3((index >> 15) & 31) = display2
        display4((index >> 20) & 31) = display3
      } else
      if (xor < (1 << 30)) { // level = 5
        if (depth == 5) { display5 = new Array(32); display5(0) = display4; depth+=1}
        display0 = new Array(32)
        display1 = new Array(32)
        display2 = new Array(32)
        display3 = new Array(32)
        display4 = new Array(32)
        display1((index >>  5) & 31) = display0
        display2((index >> 10) & 31) = display1
        display3((index >> 15) & 31) = display2
        display4((index >> 20) & 31) = display3
        display5((index >> 25) & 31) = display4
      } else { // level = 6
        throw new IllegalArgumentException()
      }
    }



    // STUFF BELOW USED BY APPEND / UPDATE

    private[immutable] final def copyOf(a: Array[AnyRef]) = {
      val b = new Array[AnyRef](a.length)
      Platform.arraycopy(a, 0, b, 0, a.length)
      b
    }

    private[immutable] final def nullSlotAndCopy(array: Array[AnyRef], index: Int) = {
      //println("copy and null")
      val x = array(index)
      array(index) = null
      copyOf(x.asInstanceOf[Array[AnyRef]])
    }


    // make sure there is no aliasing
    // requires structure is at pos index
    // ensures structure is clean and at pos index and writable at all levels except 0

    private[immutable] final def stabilize(index: Int) = (depth - 1) match {
      case 5 =>
        display5 = copyOf(display5)
        display4 = copyOf(display4)
        display3 = copyOf(display3)
        display2 = copyOf(display2)
        display1 = copyOf(display1)
        display5((index >> 25) & 31) = display4
        display4((index >> 20) & 31) = display3
        display3((index >> 15) & 31) = display2
        display2((index >> 10) & 31) = display1
        display1((index >>  5) & 31) = display0
      case 4 =>
        display4 = copyOf(display4)
        display3 = copyOf(display3)
        display2 = copyOf(display2)
        display1 = copyOf(display1)
        display4((index >> 20) & 31) = display3
        display3((index >> 15) & 31) = display2
        display2((index >> 10) & 31) = display1
        display1((index >>  5) & 31) = display0
      case 3 =>
        display3 = copyOf(display3)
        display2 = copyOf(display2)
        display1 = copyOf(display1)
        display3((index >> 15) & 31) = display2
        display2((index >> 10) & 31) = display1
        display1((index >>  5) & 31) = display0
      case 2 =>
        display2 = copyOf(display2)
        display1 = copyOf(display1)
        display2((index >> 10) & 31) = display1
        display1((index >>  5) & 31) = display0
      case 1 =>
        display1 = copyOf(display1)
        display1((index >>  5) & 31) = display0
      case 0 =>
    }



    /// USED IN UPDATE AND APPEND BACK

    // prepare for writing at an existing position

    // requires structure is clean and at pos oldIndex = xor ^ newIndex,
    // ensures structure is dirty and at pos newIndex and writable at level 0
    private[immutable] final def gotoPosWritable0(newIndex: Int, xor: Int): Unit = (depth - 1) match {
      case 5 =>
        display5 = copyOf(display5)
        display4 = nullSlotAndCopy(display5, (newIndex >> 25) & 31).asInstanceOf[Array[AnyRef]]
        display3 = nullSlotAndCopy(display4, (newIndex >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = nullSlotAndCopy(display3, (newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      case 4 =>
        display4 = copyOf(display4)
        display3 = nullSlotAndCopy(display4, (newIndex >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = nullSlotAndCopy(display3, (newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      case 3 =>
        display3 = copyOf(display3)
        display2 = nullSlotAndCopy(display3, (newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      case 2 =>
        display2 = copyOf(display2)
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      case 1 =>
        display1 = copyOf(display1)
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      case 0 =>
        display0 = copyOf(display0)
    }


    // requires structure is dirty and at pos oldIndex,
    // ensures structure is dirty and at pos newIndex and writable at level 0
    private[immutable] final def gotoPosWritable1(oldIndex: Int, newIndex: Int, xor: Int): Unit = {
      if (xor < (1 <<  5)) { // level = 0
        display0 = copyOf(display0)
      } else
      if (xor < (1 << 10)) { // level = 1
        display1 = copyOf(display1)
        display1((oldIndex >> 5) & 31) = display0
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31)
      } else
      if (xor < (1 << 15)) { // level = 2
        display1 = copyOf(display1)
        display2 = copyOf(display2)
        display1((oldIndex >>  5) & 31) = display0
        display2((oldIndex >> 10) & 31) = display1
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 20)) { // level = 3
        display1 = copyOf(display1)
        display2 = copyOf(display2)
        display3 = copyOf(display3)
        display1((oldIndex >>  5) & 31) = display0
        display2((oldIndex >> 10) & 31) = display1
        display3((oldIndex >> 15) & 31) = display2
        display2 = nullSlotAndCopy(display3, (newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 25)) { // level = 4
        display1 = copyOf(display1)
        display2 = copyOf(display2)
        display3 = copyOf(display3)
        display4 = copyOf(display4)
        display1((oldIndex >>  5) & 31) = display0
        display2((oldIndex >> 10) & 31) = display1
        display3((oldIndex >> 15) & 31) = display2
        display4((oldIndex >> 20) & 31) = display3
        display3 = nullSlotAndCopy(display4, (newIndex >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = nullSlotAndCopy(display3, (newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else
      if (xor < (1 << 30)) { // level = 5
        display1 = copyOf(display1)
        display2 = copyOf(display2)
        display3 = copyOf(display3)
        display4 = copyOf(display4)
        display5 = copyOf(display5)
        display1((oldIndex >>  5) & 31) = display0
        display2((oldIndex >> 10) & 31) = display1
        display3((oldIndex >> 15) & 31) = display2
        display4((oldIndex >> 20) & 31) = display3
        display5((oldIndex >> 25) & 31) = display4
        display4 = nullSlotAndCopy(display5, (newIndex >> 25) & 31).asInstanceOf[Array[AnyRef]]
        display3 = nullSlotAndCopy(display4, (newIndex >> 20) & 31).asInstanceOf[Array[AnyRef]]
        display2 = nullSlotAndCopy(display3, (newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        display1 = nullSlotAndCopy(display2, (newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        display0 = nullSlotAndCopy(display1, (newIndex >>  5) & 31).asInstanceOf[Array[AnyRef]]
      } else { // level = 6
        throw new IllegalArgumentException()
      }
    }


    // USED IN DROP

    private[immutable] final def copyRange(array: Array[AnyRef], oldLeft: Int, newLeft: Int) = {
      val elems = new Array[AnyRef](32)
      Platform.arraycopy(array, oldLeft, elems, newLeft, 32 - math.max(newLeft,oldLeft))
      elems
    }




    // USED IN APPEND
    // create a new block at the bottom level (and possibly nodes on its path) and prepares for writing

    // requires structure is clean and at pos oldIndex,
    // ensures structure is dirty and at pos newIndex and writable at level 0
    private[immutable] final def gotoFreshPosWritable0(oldIndex: Int, newIndex: Int, xor: Int): Unit = { // goto block start pos
      if (xor < (1 << 5)) { // level = 0
        //println("XXX clean with low xor")
      } else
      if (xor < (1 << 10)) { // level = 1
        if (depth == 1) {
          display1 = new Array(32)
          display1((oldIndex >>  5) & 31) = display0
          depth +=1
        }
        display0 = new Array(32)
      } else
      if (xor < (1 << 15)) { // level = 2
        if (depth == 2) {
          display2 = new Array(32)
          display2((oldIndex >> 10) & 31) = display1
          depth +=1
        }
        display1 = display2((newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        if (display1 == null) display1 = new Array(32)
        display0 = new Array(32)
      } else
      if (xor < (1 << 20)) { // level = 3
        if (depth == 3) {
          display3 = new Array(32)
          display3((oldIndex >> 15) & 31) = display2
          depth +=1
        }
        display2 = display3((newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        if (display2 == null) display2 = new Array(32)
        display1 = display2((newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        if (display1 == null) display1 = new Array(32)
        display0 = new Array(32)
      } else
      if (xor < (1 << 25)) { // level = 4
        if (depth == 4) {
          display4 = new Array(32)
          display4((oldIndex >> 20) & 31) = display3
          depth +=1
        }
        display3 = display4((newIndex >> 20) & 31).asInstanceOf[Array[AnyRef]]
        if (display3 == null) display3 = new Array(32)
        display2 = display3((newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        if (display2 == null) display2 = new Array(32)
        display1 = display2((newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        if (display1 == null) display1 = new Array(32)
        display0 = new Array(32)
      } else
      if (xor < (1 << 30)) { // level = 5
        if (depth == 5) {
          display5 = new Array(32)
          display5((oldIndex >>  25) & 31) = display4
          depth +=1
        }
        display4 = display5((newIndex >> 25) & 31).asInstanceOf[Array[AnyRef]]
        if (display4 == null) display4 = new Array(32)
        display3 = display4((newIndex >> 20) & 31).asInstanceOf[Array[AnyRef]]
        if (display3 == null) display3 = new Array(32)
        display2 = display3((newIndex >> 15) & 31).asInstanceOf[Array[AnyRef]]
        if (display2 == null) display2 = new Array(32)
        display1 = display2((newIndex >> 10) & 31).asInstanceOf[Array[AnyRef]]
        if (display1 == null) display1 = new Array(32)
        display0 = new Array(32)
      } else { // level = 6
        throw new IllegalArgumentException()
      }
    }


    // requires structure is dirty and at pos oldIndex,
    // ensures structure is dirty and at pos newIndex and writable at level 0
    private[immutable] final def gotoFreshPosWritable1(oldIndex: Int, newIndex: Int, xor: Int): Unit = {
      stabilize(oldIndex)
      gotoFreshPosWritable0(oldIndex, newIndex, xor)
    }




    // DEBUG STUFF

    private[immutable] def debug(): Unit = {
      return
/*
      //println("DISPLAY 5: " + display5 + " ---> " + (if (display5 ne null) display5.map(x=> if (x eq null) "." else x + "->" +x.asInstanceOf[Array[AnyRef]].mkString("")).mkString(" ") else "null"))
      //println("DISPLAY 4: " + display4 + " ---> " + (if (display4 ne null) display4.map(x=> if (x eq null) "." else x + "->" +x.asInstanceOf[Array[AnyRef]].mkString("")).mkString(" ") else "null"))
      //println("DISPLAY 3: " + display3 + " ---> " + (if (display3 ne null) display3.map(x=> if (x eq null) "." else x + "->" +x.asInstanceOf[Array[AnyRef]].mkString("")).mkString(" ") else "null"))
      //println("DISPLAY 2: " + display2 + " ---> " + (if (display2 ne null) display2.map(x=> if (x eq null) "." else x + "->" +x.asInstanceOf[Array[AnyRef]].mkString("")).mkString(" ") else "null"))
      //println("DISPLAY 1: " + display1 + " ---> " + (if (display1 ne null) display1.map(x=> if (x eq null) "." else x + "->" +x.asInstanceOf[Array[AnyRef]].mkString("")).mkString(" ") else "null"))
      //println("DISPLAY 0: " + display0 + " ---> " + (if (display0 ne null) display0.map(x=> if (x eq null) "." else x.toString).mkString(" ") else "null"))
*/
      //println("DISPLAY 5: " + (if (display5 ne null) display5.map(x=> if (x eq null) "." else x.asInstanceOf[Array[AnyRef]].deepMkString("[","","]")).mkString(" ") else "null"))
      //println("DISPLAY 4: " + (if (display4 ne null) display4.map(x=> if (x eq null) "." else x.asInstanceOf[Array[AnyRef]].deepMkString("[","","]")).mkString(" ") else "null"))
      //println("DISPLAY 3: " + (if (display3 ne null) display3.map(x=> if (x eq null) "." else x.asInstanceOf[Array[AnyRef]].deepMkString("[","","]")).mkString(" ") else "null"))
      //println("DISPLAY 2: " + (if (display2 ne null) display2.map(x=> if (x eq null) "." else x.asInstanceOf[Array[AnyRef]].deepMkString("[","","]")).mkString(" ") else "null"))
      //println("DISPLAY 1: " + (if (display1 ne null) display1.map(x=> if (x eq null) "." else x.asInstanceOf[Array[AnyRef]].deepMkString("[","","]")).mkString(" ") else "null"))
      //println("DISPLAY 0: " + (if (display0 ne null) display0.map(x=> if (x eq null) "." else x.toString).mkString(" ") else "null"))
    }


}