Scala Library: scala.collection.parallel.ParIterableLike
scala.collection.parallel.ParIterableLike
trait ParIterableLike[+T, +Repr <: ParIterable[T], +Sequential <: scala.Iterable[T] with IterableLike[T, Sequential]] extends GenIterableLike[T, Repr] with CustomParallelizable[T, Repr] with Parallel with HasNewCombiner[T, Repr]
A template trait for parallel collections of type ParIterable[T]
.
This is a base trait for Scala parallel collections. It defines behaviour common
to all parallel collections. Concrete parallel collections should inherit this
trait and ParIterable
if they want to define specific combiner factories.
Parallel operations are implemented with divide and conquer style algorithms that parallelize well. The basic idea is to split the collection into smaller parts until they are small enough to be operated on sequentially.
All of the parallel operations are implemented as tasks within this trait. Tasks rely on the concept of splitters, which extend iterators. Every parallel collection defines:
def splitter: IterableSplitter[T]
which returns an instance of IterableSplitter[T]
, which is a subtype of
Splitter[T]
. Splitters have a method remaining
to check the remaining
number of elements, and method split
which is defined by splitters. Method
split
divides the splitters iterate over into disjunct subsets:
def split: Seq[Splitter]
which splits the splitter into a sequence of disjunct subsplitters. This is typically a very fast operation which simply creates wrappers around the receiver collection. This can be repeated recursively.
Tasks are scheduled for execution through a
scala.collection.parallel.TaskSupport object, which can be changed through the
tasksupport
setter of the collection.
Method newCombiner
produces a new combiner. Combiners are an extension of
builders. They provide a method combine
which combines two combiners and
returns a combiner containing elements of both combiners. This method can be
implemented by aggressively copying all the elements into the new combiner or by
lazily binding their results. It is recommended to avoid copying all of the
elements for performance reasons, although that cost might be negligible
depending on the use case. Standard parallel collection combiners avoid copying
when merging results, relying either on a two-step lazy construction or specific
data-structure properties.
Methods:
def seq: Sequential
def par: Repr
produce the sequential or parallel implementation of the collection,
respectively. Method par
just returns a reference to this parallel collection.
Method seq
is efficient - it will not copy the elements. Instead, it will
create a sequential version of the collection using the same underlying data
structure. Note that this is not the case for sequential collections in general
- they may copy the elements and produce a different underlying data structure.
The combination of methods toMap
, toSeq
or toSet
along with par
and
seq
is a flexible way to change between different collection types.
Since this trait extends the GenIterable
trait, methods like size
must also
be implemented in concrete collections, while iterator
forwards to splitter
by default.
Each parallel collection is bound to a specific fork/join pool, on which dormant
worker threads are kept. The fork/join pool contains other information such as
the parallelism level, that is, the number of processors used. When a collection
is created, it is assigned the default fork/join pool found in the
scala.parallel
package object.
Parallel collections are not necessarily ordered in terms of the foreach
operation (see Traversable
). Parallel sequences have a well defined order for
iterators - creating an iterator and traversing the elements linearly will
always yield the same order. However, bulk operations such as foreach
, map
or filter
always occur in undefined orders for all parallel collections.
Existing parallel collection implementations provide strict parallel iterators.
Strict parallel iterators are aware of the number of elements they have yet to
traverse. It’s also possible to provide non-strict parallel iterators, which do
not know the number of elements remaining. To do this, the new collection
implementation must override isStrictSplitterCollection
to false
. This will
make some operations unavailable.
To create a new parallel collection, extend the ParIterable
trait, and
implement size
, splitter
, newCombiner
and seq
. Having an implicit
combiner factory requires extending this trait in addition, as well as providing
a companion object, as with regular collections.
Method size
is implemented as a constant time operation for parallel
collections, and parallel collection operations rely on this assumption.
The higher-order functions passed to certain operations may contain side-effects. Since implementations of bulk operations may not be sequential, this means that side-effects may not be predictable and may produce data-races, deadlocks or invalidation of state if care is not taken. It is up to the programmer to either avoid using side-effects or to use some form of synchronization when accessing mutable data.
- T
- the element type of the collection
- Repr
- the type of the actual collection containing the elements
- Self Type
- ParIterableLike [T, Repr, Sequential]
- Source
Type Members
trait Accessor[R, Tp] extends StrictSplitterCheckTask[R, Tp]
Standard accessor task that iterates over the elements of the collection.
- R
- type of the result of this method (
R
for result).
- type of the result of this method (
- Tp
- the representation type of the task at hand.
- Attributes
- protected
- Source
class Aggregate[S] extends Accessor[S, Aggregate[S]]
- Attributes
- protected[this]
- Source
trait BuilderOps[Elem, To] extends AnyRef
class Collect[S, That] extends Transformer[Combiner[S, That], Collect[S, That]]
- Attributes
- protected[this]
- Source
abstract class Composite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] extends NonDivisibleTask[R, Composite[FR, SR, R, First, Second]]
- Attributes
- protected[this]
- Source
class Copy[U >: T, That] extends Transformer[Combiner[U, That], Copy[U, That]]
- Attributes
- protected
- Source
class CopyToArray[U >: T, This >: Repr] extends Accessor[Unit, CopyToArray[U, This]]
- Attributes
- protected[this]
- Source
class Count extends Accessor[Int, Count]
- Attributes
- protected[this]
- Source
class CreateScanTree[U >: T] extends Transformer[ScanTree[U], CreateScanTree[U]]
- Attributes
- protected[this]
- Source
class Drop[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Drop[U, This]]
- Attributes
- protected[this]
- Source
class Exists extends Accessor[Boolean, Exists]
- Attributes
- protected[this]
- Source
class Filter[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Filter[U, This]]
- Attributes
- protected[this]
- Source
class FilterNot[U >: T, This >: Repr] extends Transformer[Combiner[U, This], FilterNot[U, This]]
- Attributes
- protected[this]
- Source
class Find[U >: T] extends Accessor[Option[U], Find[U]]
- Attributes
- protected[this]
- Source
class FlatMap[S, That] extends Transformer[Combiner[S, That], FlatMap[S, That]]
- Attributes
- protected[this]
- Source
class Fold[U >: T] extends Accessor[U, Fold[U]]
- Attributes
- protected[this]
- Source
class Forall extends Accessor[Boolean, Forall]
- Attributes
- protected[this]
- Source
class Foreach[S] extends Accessor[Unit, Foreach[S]]
- Attributes
- protected[this]
- Source
class FromScanTree[U >: T, That] extends StrictSplitterCheckTask[Combiner[U, That], FromScanTree[U, That]]
- Attributes
- protected[this]
- Source
class GroupBy[K, U >: T] extends Transformer[HashMapCombiner[K, U], GroupBy[K, U]]
- Attributes
- protected[this]
- Source
class Map[S, That] extends Transformer[Combiner[S, That], Map[S, That]]
- Attributes
- protected[this]
- Source
class Max[U >: T] extends Accessor[Option[U], Max[U]]
- Attributes
- protected[this]
- Source
class Min[U >: T] extends Accessor[Option[U], Min[U]]
- Attributes
- protected[this]
- Source
trait NonDivisible[R] extends NonDivisibleTask[R, NonDivisible[R]]
- Attributes
- protected[this]
- Source
trait NonDivisibleTask[R, Tp] extends StrictSplitterCheckTask[R, Tp]
- Attributes
- protected[this]
- Source
abstract class ParComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] extends Composite[FR, SR, R, First, Second]
Performs two tasks in parallel, and waits for both to finish.
- Attributes
- protected[this]
- Source
class Partition[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Combiner[U, This]), Partition[U, This]]
- Attributes
- protected[this]
- Source
class Product[U >: T] extends Accessor[U, Product[U]]
- Attributes
- protected[this]
- Source
class Reduce[U >: T] extends Accessor[Option[U], Reduce[U]]
- Attributes
- protected[this]
- Source
abstract class ResultMapping[R, Tp, R1] extends NonDivisibleTask[R1, ResultMapping[R, Tp, R1]]
- Attributes
- protected[this]
- Source
type SSCTask[R, Tp] = StrictSplitterCheckTask[R, Tp]
case class ScanLeaf[U >: T](pit: IterableSplitter[U], op: (U, U) ⇒ U, from: Int, len: Int, prev: Option[ScanLeaf[U]], acc: U) extends ScanTree[U] with scala.Product with Serializable
- Attributes
- protected[this]
- Source
case class ScanNode[U >: T](left: ScanTree[U], right: ScanTree[U]) extends ScanTree[U] with scala.Product with Serializable
- Attributes
- protected[this]
- Source
trait ScanTree[U >: T] extends AnyRef
- Attributes
- protected[this]
- Source
abstract class SeqComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] extends Composite[FR, SR, R, First, Second]
Sequentially performs one task after another.
- Attributes
- protected[this]
- Source
trait SignallingOps[PI <: DelegatedSignalling] extends AnyRef
class Slice[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Slice[U, This]]
- Attributes
- protected[this]
- Source
class Span[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Combiner[U, This]), Span[U, This]]
- Attributes
- protected[this]
- Source
class SplitAt[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Combiner[U, This]), SplitAt[U, This]]
- Attributes
- protected[this]
- Source
trait StrictSplitterCheckTask[R, Tp] extends Task[R, Tp]
- Attributes
- protected
- Source
class Sum[U >: T] extends Accessor[U, Sum[U]]
- Attributes
- protected[this]
- Source
class Take[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Take[U, This]]
- Attributes
- protected[this]
- Source
class TakeWhile[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Boolean), TakeWhile[U, This]]
- Attributes
- protected[this]
- Source
trait TaskOps[R, Tp] extends AnyRef
class ToParCollection[U >: T, That] extends Transformer[Combiner[U, That], ToParCollection[U, That]]
- Attributes
- protected[this]
- Source
class ToParMap[K, V, That] extends Transformer[Combiner[(K, V), That], ToParMap[K, V, That]]
- Attributes
- protected[this]
- Source
trait Transformer[R, Tp] extends Accessor[R, Tp]
- Attributes
- protected
- Source
class Zip[U >: T, S, That] extends Transformer[Combiner[(U, S), That], Zip[U, S, That]]
- Attributes
- protected[this]
- Source
class ZipAll[U >: T, S, That] extends Transformer[Combiner[(U, S), That], ZipAll[U, S, That]]
- Attributes
- protected[this]
- Source
Concrete Value Members From scala.collection.CustomParallelizable
def parCombiner: Combiner[T, Repr]
The default par
implementation uses the combiner provided by this method to
create a new parallel collection.
- returns
- a combiner for the parallel collection of type
ParRepr
- a combiner for the parallel collection of type
- Attributes
- protected[this]
- Definition Classes
- CustomParallelizable → Parallelizable
(defined at scala.collection.CustomParallelizable)
Abstract Value Members From scala.collection.generic.HasNewCombiner
abstract def newCombiner: Combiner[T, Repr]
- Attributes
- protected[this]
- Definition Classes
- HasNewCombiner
(defined at scala.collection.generic.HasNewCombiner)
Abstract Value Members From scala.collection.parallel.ParIterableLike
abstract def splitter: IterableSplitter[T]
Creates a new parallel iterator used to traverse the elements of this parallel
collection. This iterator is more specific than the iterator of the returned by
iterator
, and augmented with additional accessor and transformer methods.
- returns
- a parallel iterator
- Attributes
- protected[scala.collection.parallel]
(defined at scala.collection.parallel.ParIterableLike)
Concrete Value Members From scala.collection.parallel.ParIterableLike
abstract def seq: Sequential
- Definition Classes
- ParIterableLike → Parallelizable → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def ++[U >: T, That](that: GenTraversableOnce[U])(implicit bf: CanBuildFrom[Repr, U, That]): That
[use case]
Returns a new parallel iterable containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the parallel iterable is the most specific superclass encompassing the element types of the two operands.
Example:
scala> val a = List(1)
a: List[Int] = List(1)
scala> val b = List(2)
b: List[Int] = List(2)
scala> val c = a ++ b
c: List[Int] = List(1, 2)
scala> val d = List('a')
d: List[Char] = List(a)
scala> val e = c ++ d
e: List[AnyVal] = List(1, 2, a)
- B
- the element type of the returned collection.
- that
- the traversable to append.
- returns
- a new parallel iterable which contains all elements of this parallel
iterable followed by all elements of
that
.
- a new parallel iterable which contains all elements of this parallel
iterable followed by all elements of
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def /:[S](z: S)(op: (S, T) ⇒ S): S
Applies a binary operator to a start value and all elements of this parallel iterable, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as
xs foldLeft z
.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)
scala> val b = (5 /: a)(_+_)
b: Int = 15
scala> val c = (5 /: a)((x,y) => x + y)
c: Int = 15
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- z
- the start value.
- op
- the binary operator.
- returns
- the result of inserting
op
between consecutive elements of this parallel iterable, going left to right with the start valuez
on the left:
- the result of inserting
op(...op(op(z, x_1), x_2), ..., x_n)
where `x1, ..., xn` are the elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def :\[S](z: S)(op: (T, S) ⇒ S): S
Applies a binary operator to all elements of this parallel iterable and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as
xs foldRight z
.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)
scala> val b = (a :\ 5)(_+_)
b: Int = 15
scala> val c = (a :\ 5)((x,y) => x + y)
c: Int = 15
- z
- the start value
- op
- the binary operator
- returns
- the result of inserting
op
between consecutive elements of this parallel iterable, going right to left with the start valuez
on the right:
- the result of inserting
op(x_1, op(x_2, ... op(x_n, z)...))
where `x1, ..., xn` are the elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def aggregate[S](z: ⇒ S)(seqop: (S, T) ⇒ S, combop: (S, S) ⇒ S): S
Aggregates the results of applying an operator to subsequent elements.
This is a more general form of fold
and reduce
. It has similar semantics,
but does not require the result to be a supertype of the element type. It
traverses the elements in different partitions sequentially, using seqop
to
update the result, and then applies combop
to results from different
partitions. The implementation of this operation may operate on an arbitrary
number of collection partitions, so combop
may be invoked arbitrary number of
times.
For example, one might want to process some elements and then produce a Set
.
In this case, seqop
would process an element and append it to the set, while
combop
would concatenate two sets from different partitions together. The
initial value z
would be an empty set.
pc.aggregate(Set[Int]())(_ += process(_), _ ++ _)
Another example is calculating geometric mean from a collection of doubles (one would typically require big doubles for this).
- S
- the type of accumulated results
- z
- the initial value for the accumulated result of the partition - this will
typically be the neutral element for the
seqop
operator (e.g.Nil
for list concatenation or0
for summation) and may be evaluated more than once
- the initial value for the accumulated result of the partition - this will
typically be the neutral element for the
- seqop
- an operator used to accumulate results within a partition
- combop
- an associative operator used to combine results from different partitions
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def bf2seq[S, That](bf: CanBuildFrom[Repr, S, That]): CanBuildFrom[Sequential, S, That]
- Attributes
- protected[this]
(defined at scala.collection.parallel.ParIterableLike)
implicit def builder2ops[Elem, To](cb: Builder[Elem, To]): BuilderOps[Elem, To]
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def canEqual(other: Any): Boolean
(defined at scala.collection.parallel.ParIterableLike)
def collect[S, That](pf: PartialFunction[T, S])(implicit bf: CanBuildFrom[Repr, S, That]): That
[use case]
Builds a new collection by applying a partial function to all elements of this parallel iterable on which the function is defined.
- B
- the element type of the returned collection.
- pf
- the partial function which filters and maps the parallel iterable.
- returns
- a new parallel iterable resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results. The order of the elements is preserved.
- a new parallel iterable resulting from applying the given partial function
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def combinerFactory: CombinerFactory[T, Repr]
Creates a combiner factory. Each combiner factory instance is used once per invocation of a parallel transformer method for a single collection.
The default combiner factory creates a new combiner every time it is requested,
unless the combiner is thread-safe as indicated by its canBeShared
method. In
this case, the method returns a factory which returns the same combiner each
time. This is typically done for concurrent parallel collections, the combiners
of which allow thread safe access.
- Attributes
- protected[this]
(defined at scala.collection.parallel.ParIterableLike)
def combinerFactory[S, That](cbf: () ⇒ Combiner[S, That]): CombinerFactory[S, That]
- Attributes
- protected[this]
(defined at scala.collection.parallel.ParIterableLike)
def copyToArray[U >: T](xs: Array[U]): Unit
[use case]
Copies the elements of this parallel iterable to an array. Fills the given array
xs
with values of this parallel iterable. Copying will stop once either the
end of the current parallel iterable is reached, or the end of the target array
is reached.
Note: will not terminate for infinite-sized collections.
- xs
- the array to fill.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def copyToArray[U >: T](xs: Array[U], start: Int): Unit
[use case]
Copies the elements of this parallel iterable to an array. Fills the given array
xs
with values of this parallel iterable, beginning at index start
.
Copying will stop once either the end of the current parallel iterable is
reached, or the end of the target array is reached.
Note: will not terminate for infinite-sized collections.
- xs
- the array to fill.
- start
- the starting index.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def copyToArray[U >: T](xs: Array[U], start: Int, len: Int): Unit
[use case]
Copies the elements of this parallel iterable to an array. Fills the given array
xs
with at most len
elements of this parallel iterable, starting at
position start
. Copying will stop once either the end of the current parallel
iterable is reached, or the end of the target array is reached, or len
elements have been copied.
Note: will not terminate for infinite-sized collections.
- xs
- the array to fill.
- start
- the starting index.
- len
- the maximal number of elements to copy.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def count(p: (T) ⇒ Boolean): Int
Counts the number of elements in the parallel iterable which satisfy a predicate.
- p
- the predicate used to test elements.
- returns
- the number of elements satisfying the predicate
p
.
- the number of elements satisfying the predicate
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def debugBuffer: ArrayBuffer[String]
(defined at scala.collection.parallel.ParIterableLike)
implicit def delegatedSignalling2ops[PI <: DelegatedSignalling](it: PI): SignallingOps[PI]
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def drop(n: Int): Repr
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
- the number of elements to drop from this parallel iterable.
- returns
- a parallel iterable consisting of all elements of this parallel iterable
except the first
n
ones, or else the empty parallel iterable, if this parallel iterable has less thann
elements.
- a parallel iterable consisting of all elements of this parallel iterable
except the first
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def dropWhile(pred: (T) ⇒ Boolean): Repr
Drops all elements in the longest prefix of elements that satisfy the predicate, and returns a collection composed of the remaining elements.
This method will use indexFlag
signalling capabilities. This means that
splitters may set and read the indexFlag
state. The index flag is initially
set to maximum integer value.
- pred
- the predicate used to test the elements
- returns
- a collection composed of all the elements after the longest prefix of
elements in this parallel iterable that satisfy the predicate
pred
- a collection composed of all the elements after the longest prefix of
elements in this parallel iterable that satisfy the predicate
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def exists(p: (T) ⇒ Boolean): Boolean
Tests whether a predicate holds for some element of this parallel iterable.
This method will use abort
signalling capabilities. This means that splitters
may send and read abort
signals.
- p
- a predicate used to test elements
- returns
- true if
p
holds for some element, false otherwise
- true if
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def filter(pred: (T) ⇒ Boolean): Repr
Selects all elements of this parallel iterable which satisfy a predicate.
- pred
- the predicate used to test elements.
- returns
- a new parallel iterable consisting of all elements of this parallel iterable
that satisfy the given predicate
p
. Their order may not be preserved.
- a new parallel iterable consisting of all elements of this parallel iterable
that satisfy the given predicate
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def filterNot(pred: (T) ⇒ Boolean): Repr
Selects all elements of this parallel iterable which do not satisfy a predicate.
- pred
- the predicate used to test elements.
- returns
- a new parallel iterable consisting of all elements of this parallel iterable
that do not satisfy the given predicate
p
. Their order may not be preserved.
- a new parallel iterable consisting of all elements of this parallel iterable
that do not satisfy the given predicate
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def find(p: (T) ⇒ Boolean): Option[T]
Finds some element in the collection for which the predicate holds, if such an element exists. The element may not necessarily be the first such element in the iteration order.
If there are multiple elements obeying the predicate, the choice is nondeterministic.
This method will use abort
signalling capabilities. This means that splitters
may send and read abort
signals.
- p
- predicate used to test the elements
- returns
- an option value with the element if such an element exists, or
None
otherwise
- an option value with the element if such an element exists, or
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def flatMap[S, That](f: (T) ⇒ GenTraversableOnce[S])(implicit bf: CanBuildFrom[Repr, S, That]): That
[use case]
Builds a new collection by applying a function to all elements of this parallel iterable and using the elements of the resulting collections.
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of parallel iterable. This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set
def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet)
// lettersOf will return a Set[Char], not a Seq
def lettersOf(words: Seq[String]) = words.toSet flatMap (word => word.toSeq)
// xs will be an Iterable[Int]
val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2)
// ys will be a Map[Int, Int]
val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
- B
- the element type of the returned collection.
- f
- the function to apply to each element.
- returns
- a new parallel iterable resulting from applying the given collection-valued
function
f
to each element of this parallel iterable and concatenating the results.
- a new parallel iterable resulting from applying the given collection-valued
function
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def foldLeft[S](z: S)(op: (S, T) ⇒ S): S
Applies a binary operator to a start value and all elements of this parallel iterable, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- z
- the start value.
- op
- the binary operator.
- returns
- the result of inserting
op
between consecutive elements of this parallel iterable, going left to right with the start valuez
on the left:
- the result of inserting
op(...op(z, x_1), x_2, ..., x_n)
where `x1, ..., xn` are the elements of this parallel iterable. Returns `z`
if this parallel iterable is empty.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def foldRight[S](z: S)(op: (T, S) ⇒ S): S
Applies a binary operator to all elements of this parallel iterable and a start value, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- z
- the start value.
- op
- the binary operator.
- returns
- the result of inserting
op
between consecutive elements of this parallel iterable, going right to left with the start valuez
on the right:
- the result of inserting
op(x_1, op(x_2, ... op(x_n, z)...))
where `x1, ..., xn` are the elements of this parallel iterable. Returns `z`
if this parallel iterable is empty.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def fold[U >: T](z: U)(op: (U, U) ⇒ U): U
Folds the elements of this sequence using the specified associative binary operator. The order in which the elements are reduced is unspecified and may be nondeterministic.
Note this method has a different signature than the foldLeft
and foldRight
methods of the trait Traversable
. The result of folding may only be a
supertype of this parallel collection’s type parameter T
.
- U
- a type parameter for the binary operator, a supertype of
T
.
- a type parameter for the binary operator, a supertype of
- z
- a neutral element for the fold operation, it may be added to the result an
arbitrary number of times, not changing the result (e.g.
Nil
for list concatenation, 0 for addition, or 1 for multiplication)
- a neutral element for the fold operation, it may be added to the result an
arbitrary number of times, not changing the result (e.g.
- op
- a binary operator that must be associative
- returns
- the result of applying fold operator
op
between all the elements andz
- the result of applying fold operator
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def forall(p: (T) ⇒ Boolean): Boolean
Tests whether a predicate holds for all elements of this parallel iterable.
This method will use abort
signalling capabilities. This means that splitters
may send and read abort
signals.
- p
- a predicate used to test elements
- returns
- true if
p
holds for all elements, false otherwise
- true if
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def foreach[U](f: (T) ⇒ U): Unit
Applies a function f
to all the elements of parallel iterable in an undefined
order.
- U
- the result type of the function applied to each element, which is always discarded
- f
- function applied to each element
- Definition Classes
- ParIterableLike → GenTraversableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def groupBy[K](f: (T) ⇒ K): immutable.ParMap[K, Repr]
Partitions this parallel iterable into a map of parallel iterables according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new parallel iterable.
- K
- the type of keys returned by the discriminator function.
- f
- the discriminator function.
- returns
- A map from keys to parallel iterables such that the following invariant holds:
(xs groupBy f)(k) = xs filter (x => f(x) == k)
That is, every key `k` is bound to a parallel iterable of those elements
`x` for which `f(x)` equals `k` .
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def iterator: Splitter[T]
Creates a new split iterator used to traverse the elements of this collection.
By default, this method is implemented in terms of the protected splitter
method.
- returns
- a split iterator
- Definition Classes
- ParIterableLike → GenIterableLike
(defined at scala.collection.parallel.ParIterableLike)
def map[S, That](f: (T) ⇒ S)(implicit bf: CanBuildFrom[Repr, S, That]): That
[use case]
Builds a new collection by applying a function to all elements of this parallel iterable.
- B
- the element type of the returned collection.
- f
- the function to apply to each element.
- returns
- a new parallel iterable resulting from applying the given function
f
to each element of this parallel iterable and collecting the results.
- a new parallel iterable resulting from applying the given function
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def maxBy[S](f: (T) ⇒ S)(implicit cmp: Ordering[S]): T
[use case]
Finds the first element which yields the largest value measured by function f.
- B
- The result type of the function f.
- f
- The measuring function.
- returns
- the first element of this parallel iterable with the largest value measured by function f.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def minBy[S](f: (T) ⇒ S)(implicit cmp: Ordering[S]): T
[use case]
Finds the first element which yields the smallest value measured by function f.
- B
- The result type of the function f.
- f
- The measuring function.
- returns
- the first element of this parallel iterable with the smallest value measured by function f.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def mkString(sep: String): String
Displays all elements of this parallel iterable in a string using a separator string.
- sep
- the separator string.
- returns
- a string representation of this parallel iterable. In the resulting string
the string representations (w.r.t. the method
toString
) of all elements of this parallel iterable are separated by the stringsep
.
- a string representation of this parallel iterable. In the resulting string
the string representations (w.r.t. the method
- Definition Classes
- ParIterableLike → GenTraversableOnce
Example:
List(1, 2, 3).mkString("|") = "1|2|3"
(defined at scala.collection.parallel.ParIterableLike)
def mkString(start: String, sep: String, end: String): String
Displays all elements of this parallel iterable in a string using start, end, and separator strings.
- start
- the starting string.
- sep
- the separator string.
- end
- the ending string.
- returns
- a string representation of this parallel iterable. The resulting string
begins with the string
start
and ends with the stringend
. Inside, the string representations (w.r.t. the methodtoString
) of all elements of this parallel iterable are separated by the stringsep
.
- a string representation of this parallel iterable. The resulting string
begins with the string
- Definition Classes
- ParIterableLike → GenTraversableOnce
Example:
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
(defined at scala.collection.parallel.ParIterableLike)
def partition(pred: (T) ⇒ Boolean): (Repr, Repr)
Partitions this parallel iterable in two parallel iterables according to a predicate.
- pred
- the predicate on which to partition.
- returns
- a pair of parallel iterables: the first parallel iterable consists of all
elements that satisfy the predicate
p
and the second parallel iterable consists of all elements that don’t. The relative order of the elements in the resulting parallel iterables may not be preserved.
- a pair of parallel iterables: the first parallel iterable consists of all
elements that satisfy the predicate
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def reduceLeftOption[U >: T](op: (U, T) ⇒ U): Option[U]
Optionally applies a binary operator to all elements of this parallel iterable, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- op
- the binary operator.
- returns
- an option value containing the result of
reduceLeft(op)
if this parallel iterable is nonempty,None
otherwise.
- an option value containing the result of
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def reduceLeft[U >: T](op: (U, T) ⇒ U): U
(defined at scala.collection.parallel.ParIterableLike)
def reduceOption[U >: T](op: (U, U) ⇒ U): Option[U]
Optionally reduces the elements of this sequence using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
Note this method has a different signature than the reduceLeftOption
and
reduceRightOption
methods of the trait Traversable
. The result of reducing
may only be a supertype of this parallel collection’s type parameter T
.
- U
- A type parameter for the binary operator, a supertype of
T
.
- A type parameter for the binary operator, a supertype of
- op
- A binary operator that must be associative.
- returns
- An option value containing result of applying reduce operator
op
between all the elements if the collection is nonempty, andNone
otherwise.
- An option value containing result of applying reduce operator
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def reduceRightOption[U >: T](op: (T, U) ⇒ U): Option[U]
Optionally applies a binary operator to all elements of this parallel iterable, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- op
- the binary operator.
- returns
- an option value containing the result of
reduceRight(op)
if this parallel iterable is nonempty,None
otherwise.
- an option value containing the result of
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def reduceRight[U >: T](op: (T, U) ⇒ U): U
Applies a binary operator to all elements of this parallel iterable, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- op
- the binary operator.
- returns
- the result of inserting
op
between consecutive elements of this parallel iterable, going right to left:
- the result of inserting
op(x_1, op(x_2, ..., op(x_{n-1}, x_n)...))
where `x1, ..., xn` are the elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
- Exceptions thrown
- UnsupportedOperationException if this parallel iterable is empty.
(defined at scala.collection.parallel.ParIterableLike)
def reduce[U >: T](op: (U, U) ⇒ U): U
Reduces the elements of this sequence using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
Note this method has a different signature than the reduceLeft
and
reduceRight
methods of the trait Traversable
. The result of reducing may
only be a supertype of this parallel collection’s type parameter T
.
- U
- A type parameter for the binary operator, a supertype of
T
.
- A type parameter for the binary operator, a supertype of
- op
- A binary operator that must be associative.
- returns
- The result of applying reduce operator
op
between all the elements if the collection is nonempty.
- The result of applying reduce operator
- Definition Classes
- ParIterableLike → GenTraversableOnce
- Exceptions thrown
- UnsupportedOperationException if this parallel iterable is empty.
(defined at scala.collection.parallel.ParIterableLike)
def reuse[S, That](oldc: Option[Combiner[S, That]], newc: Combiner[S, That]): Combiner[S, That]
Optionally reuses an existing combiner for better performance. By default it
doesn’t - subclasses may override this behaviour. The provided combiner oldc
that can potentially be reused will be either some combiner from the previous
computational task, or None
if there was no previous phase (in which case this
method must return newc
).
- oldc
- The combiner that is the result of the previous task, or
None
if there was no previous task.
- The combiner that is the result of the previous task, or
- newc
- The new, empty combiner that can be used.
- returns
- Either
newc
oroldc
.
- Either
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def sameElements[U >: T](that: GenIterable[U]): Boolean
[use case]
Checks if the other iterable collection contains the same elements in the same order as this parallel iterable.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Note: will not terminate for infinite-sized collections.
- that
- the collection to compare with.
- returns
true
, if both collections contain the same elements in the same order,false
otherwise.
- Definition Classes
- ParIterableLike → GenIterableLike
(defined at scala.collection.parallel.ParIterableLike)
def scan[U >: T, That](z: U)(op: (U, U) ⇒ U)(implicit bf: CanBuildFrom[Repr, U, That]): That
[use case]
Computes a prefix scan of the elements of the collection.
Note: The neutral element z
may be applied more than once.
- z
- neutral element for the operator
op
- neutral element for the operator
- op
- the associative operator for the scan
- returns
- a new parallel iterable containing the prefix scan of the elements in this parallel iterable
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def scanLeft[S, That](z: S)(op: (S, T) ⇒ S)(implicit bf: CanBuildFrom[Repr, S, That]): That
Produces a collection containing cumulative results of applying the operator going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- That
- the actual type of the resulting collection
- z
- the initial value
- op
- the binary operator applied to the intermediate result and the element
- bf
- an implicit value of class
CanBuildFrom
which determines the result classThat
from the current representation typeRepr
and and the new element typeB
.
- an implicit value of class
- returns
- collection with intermediate results
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def scanRight[S, That](z: S)(op: (T, S) ⇒ S)(implicit bf: CanBuildFrom[Repr, S, That]): That
Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
- That
- the actual type of the resulting collection
- z
- the initial value
- op
- the binary operator applied to the intermediate result and the element
- bf
- an implicit value of class
CanBuildFrom
which determines the result classThat
from the current representation typeRepr
and and the new element typeB
.
- an implicit value of class
- returns
- collection with intermediate results
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def sequentially[S, That <: Parallel](b: (Sequential) ⇒ Parallelizable[S, That]): Repr
- Attributes
- protected[this]
(defined at scala.collection.parallel.ParIterableLike)
def slice(unc_from: Int, unc_until: Int): Repr
Selects an interval of elements. The returned collection is made up of all
elements x
which satisfy the invariant:
from <= indexOf(x) < until
Note: might return different results for different runs, unless the underlying collection type is ordered.
- unc_from
- the lowest index to include from this parallel iterable.
- unc_until
- the lowest index to EXCLUDE from this parallel iterable.
- returns
- a parallel iterable containing the elements greater than or equal to index
from
extending up to (but not including) indexuntil
of this parallel iterable.
- a parallel iterable containing the elements greater than or equal to index
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def span(pred: (T) ⇒ Boolean): (Repr, Repr)
Splits this parallel iterable into a prefix/suffix pair according to a predicate.
This method will use indexFlag
signalling capabilities. This means that
splitters may set and read the indexFlag
state. The index flag is initially
set to maximum integer value.
- pred
- the predicate used to test the elements
- returns
- a pair consisting of the longest prefix of the collection for which all the
elements satisfy
pred
, and the rest of the collection
- a pair consisting of the longest prefix of the collection for which all the
elements satisfy
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def splitAt(n: Int): (Repr, Repr)
Splits this parallel iterable into two at a given position. Note: c splitAt n
is equivalent to (but possibly more efficient than) (c take n, c drop n)
.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
- the position at which to split.
- returns
- a pair of parallel iterables consisting of the first
n
elements of this parallel iterable, and the other elements.
- a pair of parallel iterables consisting of the first
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def take(n: Int): Repr
Selects first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
- the number of elements to take from this parallel iterable.
- returns
- a parallel iterable consisting only of the first
n
elements of this parallel iterable, or else the whole parallel iterable, if it has less thann
elements.
- a parallel iterable consisting only of the first
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
def takeWhile(pred: (T) ⇒ Boolean): Repr
Takes the longest prefix of elements that satisfy the predicate.
This method will use indexFlag
signalling capabilities. This means that
splitters may set and read the indexFlag
state. The index flag is initially
set to maximum integer value.
- pred
- the predicate used to test the elements
- returns
- the longest prefix of this parallel iterable of elements that satisfy the
predicate
pred
- the longest prefix of this parallel iterable of elements that satisfy the
predicate
- Definition Classes
- ParIterableLike → GenTraversableLike
(defined at scala.collection.parallel.ParIterableLike)
implicit def task2ops[R, Tp](tsk: SSCTask[R, Tp]): TaskOps[R, Tp]
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def tasksupport: TaskSupport
The task support object which is responsible for scheduling and load-balancing tasks to processors.
- See also
- scala.collection.parallel.TaskSupport
(defined at scala.collection.parallel.ParIterableLike)
def tasksupport_=(ts: TaskSupport): Unit
Changes the task support object which is responsible for scheduling and load-balancing tasks to processors.
A task support object can be changed in a parallel collection after it has been created, but only during a quiescent period, i.e. while there are no concurrent invocations to parallel collection methods.
Here is a way to change the task support of a parallel collection:
import scala.collection.parallel._
val pc = mutable.ParArray(1, 2, 3)
pc.tasksupport = new ForkJoinTaskSupport(
new java.util.concurrent.ForkJoinPool(2))
- See also
- scala.collection.parallel.TaskSupport
(defined at scala.collection.parallel.ParIterableLike)
def toBuffer[U >: T]: Buffer[U]
Uses the contents of this parallel iterable to create a new mutable buffer.
Note: will not terminate for infinite-sized collections.
- returns
- a buffer containing all elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toIndexedSeq: immutable.IndexedSeq[T]
Converts this parallel iterable to an indexed sequence.
Note: will not terminate for infinite-sized collections.
- returns
- an indexed sequence containing all elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toIterable: ParIterable[T]
Converts this parallel iterable to an iterable collection. Note that the choice
of target Iterable
is lazy in this default implementation as this
TraversableOnce
may be lazy and unevaluated (i.e. it may be an iterator which
is only traversable once).
Note: will not terminate for infinite-sized collections.
- returns
- an
Iterable
containing all elements of this parallel iterable.
- an
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toIterator: scala.Iterator[T]
Returns an Iterator over the elements in this parallel iterable. Will return the same Iterator if this instance is already an Iterator.
Note: will not terminate for infinite-sized collections.
- returns
- an Iterator containing all elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toMap[K, V](implicit ev: <:<[T, (K, V)]): immutable.ParMap[K, V]
[use case]
Converts this parallel iterable to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
Note: will not terminate for infinite-sized collections.
- returns
- a map of type
immutable.Map[T, U]
containing all key/value pairs of type(T, U)
of this parallel iterable.
- a map of type
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toParCollection[U >: T, That](cbf: () ⇒ Combiner[U, That]): That
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def toParMap[K, V, That](cbf: () ⇒ Combiner[(K, V), That])(implicit ev: <:<[T, (K, V)]): That
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def toSeq: ParSeq[T]
Converts this parallel iterable to a sequence. As with toIterable
, it’s lazy
in this default implementation, as this TraversableOnce
may be lazy and
unevaluated.
Note: will not terminate for infinite-sized collections.
- returns
- a sequence containing all elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toSet[U >: T]: immutable.ParSet[U]
Converts this parallel iterable to a set.
Note: will not terminate for infinite-sized collections.
- returns
- a set containing all elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def toTraversable: GenTraversable[T]
Converts this parallel iterable to an unspecified Traversable. Will return the same collection if this instance is already Traversable.
Note: will not terminate for infinite-sized collections.
- returns
- a Traversable containing all elements of this parallel iterable.
- Definition Classes
- ParIterableLike → GenTraversableOnce
(defined at scala.collection.parallel.ParIterableLike)
def withFilter(pred: (T) ⇒ Boolean): Repr
(defined at scala.collection.parallel.ParIterableLike)
def wrap[R](body: ⇒ R): NonDivisible[R]
- Attributes
- protected
(defined at scala.collection.parallel.ParIterableLike)
def zipAll[S, U >: T, That](that: GenIterable[S], thisElem: U, thatElem: S)(implicit bf: CanBuildFrom[Repr, (U, S), That]): That
[use case]
Returns a parallel iterable formed from this parallel iterable and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- B
- the type of the second half of the returned pairs
- that
- The iterable providing the second half of each result pair
- thisElem
- the element to be used to fill up the result if this parallel iterable is
shorter than
that
.
- the element to be used to fill up the result if this parallel iterable is
shorter than
- thatElem
- the element to be used to fill up the result if
that
is shorter than this parallel iterable.
- the element to be used to fill up the result if
- returns
- a new parallel iterable containing pairs consisting of corresponding
elements of this parallel iterable and
that
. The length of the returned collection is the maximum of the lengths of this parallel iterable andthat
. If this parallel iterable is shorter thanthat
,thisElem
values are used to pad the result. Ifthat
is shorter than this parallel iterable,thatElem
values are used to pad the result.
- a new parallel iterable containing pairs consisting of corresponding
elements of this parallel iterable and
- Definition Classes
- ParIterableLike → GenIterableLike
(defined at scala.collection.parallel.ParIterableLike)
def zipWithIndex[U >: T, That](implicit bf: CanBuildFrom[Repr, (U, Int), That]): That
[use case]
Zips this parallel iterable with its indices.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
- A new parallel iterable containing pairs consisting of all elements of this
parallel iterable paired with their index. Indices start at
0
.
- A new parallel iterable containing pairs consisting of all elements of this
parallel iterable paired with their index. Indices start at
- Definition Classes
- ParIterableLike → GenIterableLike
Example:
List("a", "b", "c").zipWithIndex = List(("a", 0), ("b", 1), ("c", 2))
(defined at scala.collection.parallel.ParIterableLike)
def zip[U >: T, S, That](that: GenIterable[S])(implicit bf: CanBuildFrom[Repr, (U, S), That]): That
[use case]
Returns a parallel iterable formed from this parallel iterable and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- B
- the type of the second half of the returned pairs
- that
- The iterable providing the second half of each result pair
- returns
- a new parallel iterable containing pairs consisting of corresponding
elements of this parallel iterable and
that
. The length of the returned collection is the minimum of the lengths of this parallel iterable andthat
.
- a new parallel iterable containing pairs consisting of corresponding
elements of this parallel iterable and
- Definition Classes
- ParIterableLike → GenIterableLike
(defined at scala.collection.parallel.ParIterableLike)
Deprecated Value Members From scala.collection.parallel.ParIterableLike
def view: IterableView[T, Sequential]
- Annotations
- @ deprecated
- Deprecated
- (Since version 2.11.0) Use.seq.view instead
(defined at scala.collection.parallel.ParIterableLike)
Concrete Value Members From Implicit scala.collection.parallel.CollectionsHaveToParArray ——————————————————————————–
def toParArray: ParArray[T]
- Implicit information
- This member is added by an implicit conversion from ParIterableLike [T, Repr, Sequential] to CollectionsHaveToParArray [ParIterableLike [T, Repr, Sequential], T] performed by method CollectionsHaveToParArray in scala.collection.parallel. This conversion will take place only if an implicit value of type (ParIterableLike [T, Repr, Sequential]) ⇒ GenTraversableOnce [T] is in scope.
- Definition Classes
- CollectionsHaveToParArray (added by implicit convertion: scala.collection.parallel.CollectionsHaveToParArray)
Full Source:
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2013, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
package scala
package collection.parallel
import scala.language.{ higherKinds, implicitConversions }
import scala.collection.mutable.Builder
import scala.collection.mutable.ArrayBuffer
import scala.collection.IterableLike
import scala.collection.Parallel
import scala.collection.Parallelizable
import scala.collection.CustomParallelizable
import scala.collection.generic._
import scala.collection.GenIterableLike
import scala.collection.GenIterable
import scala.collection.GenTraversableOnce
import scala.collection.GenTraversable
import immutable.HashMapCombiner
import scala.reflect.ClassTag
import scala.annotation.unchecked.uncheckedVariance
import scala.collection.parallel.ParallelCollectionImplicits._
/** A template trait for parallel collections of type `ParIterable[T]`.
*
* $paralleliterableinfo
*
* $sideeffects
*
* @tparam T the element type of the collection
* @tparam Repr the type of the actual collection containing the elements
*
* @define paralleliterableinfo
* This is a base trait for Scala parallel collections. It defines behaviour
* common to all parallel collections. Concrete parallel collections should
* inherit this trait and `ParIterable` if they want to define specific combiner
* factories.
*
* Parallel operations are implemented with divide and conquer style algorithms that
* parallelize well. The basic idea is to split the collection into smaller parts until
* they are small enough to be operated on sequentially.
*
* All of the parallel operations are implemented as tasks within this trait. Tasks rely
* on the concept of splitters, which extend iterators. Every parallel collection defines:
*
* {{{
* def splitter: IterableSplitter[T]
* }}}
*
* which returns an instance of `IterableSplitter[T]`, which is a subtype of `Splitter[T]`.
* Splitters have a method `remaining` to check the remaining number of elements,
* and method `split` which is defined by splitters. Method `split` divides the splitters
* iterate over into disjunct subsets:
*
* {{{
* def split: Seq[Splitter]
* }}}
*
* which splits the splitter into a sequence of disjunct subsplitters. This is typically a
* very fast operation which simply creates wrappers around the receiver collection.
* This can be repeated recursively.
*
* Tasks are scheduled for execution through a
* [[scala.collection.parallel.TaskSupport]] object, which can be changed
* through the `tasksupport` setter of the collection.
*
* Method `newCombiner` produces a new combiner. Combiners are an extension of builders.
* They provide a method `combine` which combines two combiners and returns a combiner
* containing elements of both combiners.
* This method can be implemented by aggressively copying all the elements into the new combiner
* or by lazily binding their results. It is recommended to avoid copying all of
* the elements for performance reasons, although that cost might be negligible depending on
* the use case. Standard parallel collection combiners avoid copying when merging results,
* relying either on a two-step lazy construction or specific data-structure properties.
*
* Methods:
*
* {{{
* def seq: Sequential
* def par: Repr
* }}}
*
* produce the sequential or parallel implementation of the collection, respectively.
* Method `par` just returns a reference to this parallel collection.
* Method `seq` is efficient - it will not copy the elements. Instead,
* it will create a sequential version of the collection using the same underlying data structure.
* Note that this is not the case for sequential collections in general - they may copy the elements
* and produce a different underlying data structure.
*
* The combination of methods `toMap`, `toSeq` or `toSet` along with `par` and `seq` is a flexible
* way to change between different collection types.
*
* Since this trait extends the `GenIterable` trait, methods like `size` must also
* be implemented in concrete collections, while `iterator` forwards to `splitter` by
* default.
*
* Each parallel collection is bound to a specific fork/join pool, on which dormant worker
* threads are kept. The fork/join pool contains other information such as the parallelism
* level, that is, the number of processors used. When a collection is created, it is assigned the
* default fork/join pool found in the `scala.parallel` package object.
*
* Parallel collections are not necessarily ordered in terms of the `foreach`
* operation (see `Traversable`). Parallel sequences have a well defined order for iterators - creating
* an iterator and traversing the elements linearly will always yield the same order.
* However, bulk operations such as `foreach`, `map` or `filter` always occur in undefined orders for all
* parallel collections.
*
* Existing parallel collection implementations provide strict parallel iterators. Strict parallel iterators are aware
* of the number of elements they have yet to traverse. It's also possible to provide non-strict parallel iterators,
* which do not know the number of elements remaining. To do this, the new collection implementation must override
* `isStrictSplitterCollection` to `false`. This will make some operations unavailable.
*
* To create a new parallel collection, extend the `ParIterable` trait, and implement `size`, `splitter`,
* `newCombiner` and `seq`. Having an implicit combiner factory requires extending this trait in addition, as
* well as providing a companion object, as with regular collections.
*
* Method `size` is implemented as a constant time operation for parallel collections, and parallel collection
* operations rely on this assumption.
*
* @author Aleksandar Prokopec
* @since 2.9
*
* @define sideeffects
* The higher-order functions passed to certain operations may contain side-effects. Since implementations
* of bulk operations may not be sequential, this means that side-effects may not be predictable and may
* produce data-races, deadlocks or invalidation of state if care is not taken. It is up to the programmer
* to either avoid using side-effects or to use some form of synchronization when accessing mutable data.
*
* @define pbfinfo
* An implicit value of class `CanCombineFrom` which determines the
* result class `That` from the current representation type `Repr` and
* and the new element type `B`. This builder factory can provide a parallel
* builder for the resulting collection.
*
* @define abortsignalling
* This method will use `abort` signalling capabilities. This means
* that splitters may send and read `abort` signals.
*
* @define indexsignalling
* This method will use `indexFlag` signalling capabilities. This means
* that splitters may set and read the `indexFlag` state.
* @define Coll `ParIterable`
* @define coll parallel iterable
*/
trait ParIterableLike[+T, +Repr <: ParIterable[T], +Sequential <: Iterable[T] with IterableLike[T, Sequential]]
extends GenIterableLike[T, Repr]
with CustomParallelizable[T, Repr]
with Parallel
with HasNewCombiner[T, Repr]
{
self: ParIterableLike[T, Repr, Sequential] =>
@transient
@volatile
private var _tasksupport = defaultTaskSupport
protected def initTaskSupport() {
_tasksupport = defaultTaskSupport
}
/** The task support object which is responsible for scheduling and
* load-balancing tasks to processors.
*
* @see [[scala.collection.parallel.TaskSupport]]
*/
def tasksupport = {
val ts = _tasksupport
if (ts eq null) {
_tasksupport = defaultTaskSupport
defaultTaskSupport
} else ts
}
/** Changes the task support object which is responsible for scheduling and
* load-balancing tasks to processors.
*
* A task support object can be changed in a parallel collection after it
* has been created, but only during a quiescent period, i.e. while there
* are no concurrent invocations to parallel collection methods.
*
* Here is a way to change the task support of a parallel collection:
*
* {{{
* import scala.collection.parallel._
* val pc = mutable.ParArray(1, 2, 3)
* pc.tasksupport = new ForkJoinTaskSupport(
* new java.util.concurrent.ForkJoinPool(2))
* }}}
*
* @see [[scala.collection.parallel.TaskSupport]]
*/
def tasksupport_=(ts: TaskSupport) = _tasksupport = ts
def seq: Sequential
def repr: Repr = this.asInstanceOf[Repr]
final def isTraversableAgain = true
def hasDefiniteSize = true
def isEmpty = size == 0
def nonEmpty = size != 0
def head = iterator.next()
def headOption = if (nonEmpty) Some(head) else None
def tail = drop(1)
def last = {
var lst = head
for (x <- this.seq) lst = x
lst
}
def lastOption = if (nonEmpty) Some(last) else None
def init = take(size - 1)
/** Creates a new parallel iterator used to traverse the elements of this parallel collection.
* This iterator is more specific than the iterator of the returned by `iterator`, and augmented
* with additional accessor and transformer methods.
*
* @return a parallel iterator
*/
protected[parallel] def splitter: IterableSplitter[T]
/** Creates a new split iterator used to traverse the elements of this collection.
*
* By default, this method is implemented in terms of the protected `splitter` method.
*
* @return a split iterator
*/
def iterator: Splitter[T] = splitter
override def par: Repr = repr
/** Denotes whether this parallel collection has strict splitters.
*
* This is true in general, and specific collection instances may choose to
* override this method. Such collections will fail to execute methods
* which rely on splitters being strict, i.e. returning a correct value
* in the `remaining` method.
*
* This method helps ensure that such failures occur on method invocations,
* rather than later on and in unpredictable ways.
*/
def isStrictSplitterCollection = true
/** The `newBuilder` operation returns a parallel builder assigned to this collection's fork/join pool.
* This method forwards the call to `newCombiner`.
*/
//protected[this] def newBuilder: scala.collection.mutable.Builder[T, Repr] = newCombiner
/** Optionally reuses an existing combiner for better performance. By default it doesn't - subclasses may override this behaviour.
* The provided combiner `oldc` that can potentially be reused will be either some combiner from the previous computational task, or `None` if there
* was no previous phase (in which case this method must return `newc`).
*
* @param oldc The combiner that is the result of the previous task, or `None` if there was no previous task.
* @param newc The new, empty combiner that can be used.
* @return Either `newc` or `oldc`.
*/
protected def reuse[S, That](oldc: Option[Combiner[S, That]], newc: Combiner[S, That]): Combiner[S, That] = newc
type SSCTask[R, Tp] = StrictSplitterCheckTask[R, Tp]
/* helper traits - to avoid structural invocations */
trait TaskOps[R, Tp] {
def mapResult[R1](mapping: R => R1): ResultMapping[R, Tp, R1]
// public method with inaccessible types in parameters
def compose[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3): SeqComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]]
def parallel[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3): ParComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]]
}
trait BuilderOps[Elem, To] {
trait Otherwise[Cmb] {
def otherwise(notbody: => Unit)(implicit t: ClassTag[Cmb]): Unit
}
def ifIs[Cmb](isbody: Cmb => Unit): Otherwise[Cmb]
def isCombiner: Boolean
def asCombiner: Combiner[Elem, To]
}
trait SignallingOps[PI <: DelegatedSignalling] {
def assign(cntx: Signalling): PI
}
/* convenience task operations wrapper */
protected implicit def task2ops[R, Tp](tsk: SSCTask[R, Tp]) = new TaskOps[R, Tp] {
def mapResult[R1](mapping: R => R1): ResultMapping[R, Tp, R1] = new ResultMapping[R, Tp, R1](tsk) {
def map(r: R): R1 = mapping(r)
}
def compose[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3) = new SeqComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]](tsk, t2) {
def combineResults(fr: R, sr: R2): R3 = resCombiner(fr, sr)
}
def parallel[R3, R2, Tp2](t2: SSCTask[R2, Tp2])(resCombiner: (R, R2) => R3) = new ParComposite[R, R2, R3, SSCTask[R, Tp], SSCTask[R2, Tp2]](tsk, t2) {
def combineResults(fr: R, sr: R2): R3 = resCombiner(fr, sr)
}
}
protected def wrap[R](body: => R) = new NonDivisible[R] {
def leaf(prevr: Option[R]) = result = body
@volatile var result: R = null.asInstanceOf[R]
}
/* convenience signalling operations wrapper */
protected implicit def delegatedSignalling2ops[PI <: DelegatedSignalling](it: PI) = new SignallingOps[PI] {
def assign(cntx: Signalling): PI = {
it.signalDelegate = cntx
it
}
}
protected implicit def builder2ops[Elem, To](cb: Builder[Elem, To]) = new BuilderOps[Elem, To] {
def ifIs[Cmb](isbody: Cmb => Unit) = new Otherwise[Cmb] {
def otherwise(notbody: => Unit)(implicit t: ClassTag[Cmb]) {
if (cb.getClass == t.runtimeClass) isbody(cb.asInstanceOf[Cmb]) else notbody
}
}
def isCombiner = cb.isInstanceOf[Combiner[_, _]]
def asCombiner = cb.asInstanceOf[Combiner[Elem, To]]
}
protected[this] def bf2seq[S, That](bf: CanBuildFrom[Repr, S, That]) = new CanBuildFrom[Sequential, S, That] {
def apply(from: Sequential) = bf.apply(from.par.asInstanceOf[Repr]) // !!! we only use this on `this.seq`, and know that `this.seq.par.getClass == this.getClass`
def apply() = bf.apply()
}
protected[this] def sequentially[S, That <: Parallel](b: Sequential => Parallelizable[S, That]) = b(seq).par.asInstanceOf[Repr]
def mkString(start: String, sep: String, end: String): String = seq.mkString(start, sep, end)
def mkString(sep: String): String = seq.mkString("", sep, "")
def mkString: String = seq.mkString("")
override def toString = seq.mkString(stringPrefix + "(", ", ", ")")
def canEqual(other: Any) = true
/** Reduces the elements of this sequence using the specified associative binary operator.
*
* $undefinedorder
*
* Note this method has a different signature than the `reduceLeft`
* and `reduceRight` methods of the trait `Traversable`.
* The result of reducing may only be a supertype of this parallel collection's
* type parameter `T`.
*
* @tparam U A type parameter for the binary operator, a supertype of `T`.
* @param op A binary operator that must be associative.
* @return The result of applying reduce operator `op` between all the elements if the collection is nonempty.
* @throws UnsupportedOperationException
* if this $coll is empty.
*/
def reduce[U >: T](op: (U, U) => U): U = {
tasksupport.executeAndWaitResult(new Reduce(op, splitter) mapResult { _.get })
}
/** Optionally reduces the elements of this sequence using the specified associative binary operator.
*
* $undefinedorder
*
* Note this method has a different signature than the `reduceLeftOption`
* and `reduceRightOption` methods of the trait `Traversable`.
* The result of reducing may only be a supertype of this parallel collection's
* type parameter `T`.
*
* @tparam U A type parameter for the binary operator, a supertype of `T`.
* @param op A binary operator that must be associative.
* @return An option value containing result of applying reduce operator `op` between all
* the elements if the collection is nonempty, and `None` otherwise.
*/
def reduceOption[U >: T](op: (U, U) => U): Option[U] = if (isEmpty) None else Some(reduce(op))
/** Folds the elements of this sequence using the specified associative binary operator.
* The order in which the elements are reduced is unspecified and may be nondeterministic.
*
* Note this method has a different signature than the `foldLeft`
* and `foldRight` methods of the trait `Traversable`.
* The result of folding may only be a supertype of this parallel collection's
* type parameter `T`.
*
* @tparam U a type parameter for the binary operator, a supertype of `T`.
* @param z a neutral element for the fold operation, it may be added to the result
* an arbitrary number of times, not changing the result (e.g. `Nil` for list concatenation,
* 0 for addition, or 1 for multiplication)
* @param op a binary operator that must be associative
* @return the result of applying fold operator `op` between all the elements and `z`
*/
def fold[U >: T](z: U)(op: (U, U) => U): U = {
tasksupport.executeAndWaitResult(new Fold(z, op, splitter))
}
/** Aggregates the results of applying an operator to subsequent elements.
*
* This is a more general form of `fold` and `reduce`. It has similar semantics, but does
* not require the result to be a supertype of the element type. It traverses the elements in
* different partitions sequentially, using `seqop` to update the result, and then
* applies `combop` to results from different partitions. The implementation of this
* operation may operate on an arbitrary number of collection partitions, so `combop`
* may be invoked arbitrary number of times.
*
* For example, one might want to process some elements and then produce a `Set`. In this
* case, `seqop` would process an element and append it to the set, while `combop`
* would concatenate two sets from different partitions together. The initial value
* `z` would be an empty set.
*
* {{{
* pc.aggregate(Set[Int]())(_ += process(_), _ ++ _)
* }}}
*
* Another example is calculating geometric mean from a collection of doubles
* (one would typically require big doubles for this).
*
* @tparam S the type of accumulated results
* @param z the initial value for the accumulated result of the partition - this
* will typically be the neutral element for the `seqop` operator (e.g.
* `Nil` for list concatenation or `0` for summation) and may be evaluated
* more than once
* @param seqop an operator used to accumulate results within a partition
* @param combop an associative operator used to combine results from different partitions
*/
def aggregate[S](z: =>S)(seqop: (S, T) => S, combop: (S, S) => S): S = {
tasksupport.executeAndWaitResult(new Aggregate(() => z, seqop, combop, splitter))
}
def foldLeft[S](z: S)(op: (S, T) => S): S = seq.foldLeft(z)(op)
def foldRight[S](z: S)(op: (T, S) => S): S = seq.foldRight(z)(op)
def reduceLeft[U >: T](op: (U, T) => U): U = seq.reduceLeft(op)
def reduceRight[U >: T](op: (T, U) => U): U = seq.reduceRight(op)
def reduceLeftOption[U >: T](op: (U, T) => U): Option[U] = seq.reduceLeftOption(op)
def reduceRightOption[U >: T](op: (T, U) => U): Option[U] = seq.reduceRightOption(op)
/** Applies a function `f` to all the elements of $coll in an undefined order.
*
* @tparam U the result type of the function applied to each element, which is always discarded
* @param f function applied to each element
*/
def foreach[U](f: T => U) = {
tasksupport.executeAndWaitResult(new Foreach(f, splitter))
}
def count(p: T => Boolean): Int = {
tasksupport.executeAndWaitResult(new Count(p, splitter))
}
def sum[U >: T](implicit num: Numeric[U]): U = {
tasksupport.executeAndWaitResult(new Sum[U](num, splitter))
}
def product[U >: T](implicit num: Numeric[U]): U = {
tasksupport.executeAndWaitResult(new Product[U](num, splitter))
}
def min[U >: T](implicit ord: Ordering[U]): T = {
tasksupport.executeAndWaitResult(new Min(ord, splitter) mapResult { _.get }).asInstanceOf[T]
}
def max[U >: T](implicit ord: Ordering[U]): T = {
tasksupport.executeAndWaitResult(new Max(ord, splitter) mapResult { _.get }).asInstanceOf[T]
}
def maxBy[S](f: T => S)(implicit cmp: Ordering[S]): T = {
if (isEmpty) throw new UnsupportedOperationException("empty.maxBy")
reduce((x, y) => if (cmp.gteq(f(x), f(y))) x else y)
}
def minBy[S](f: T => S)(implicit cmp: Ordering[S]): T = {
if (isEmpty) throw new UnsupportedOperationException("empty.minBy")
reduce((x, y) => if (cmp.lteq(f(x), f(y))) x else y)
}
def map[S, That](f: T => S)(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) {
tasksupport.executeAndWaitResult(new Map[S, That](f, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult { _.resultWithTaskSupport })
} else setTaskSupport(seq.map(f)(bf2seq(bf)), tasksupport)
/*bf ifParallel { pbf =>
tasksupport.executeAndWaitResult(new Map[S, That](f, pbf, splitter) mapResult { _.result })
} otherwise seq.map(f)(bf2seq(bf))*/
def collect[S, That](pf: PartialFunction[T, S])(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) {
tasksupport.executeAndWaitResult(new Collect[S, That](pf, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult { _.resultWithTaskSupport })
} else setTaskSupport(seq.collect(pf)(bf2seq(bf)), tasksupport)
/*bf ifParallel { pbf =>
tasksupport.executeAndWaitResult(new Collect[S, That](pf, pbf, splitter) mapResult { _.result })
} otherwise seq.collect(pf)(bf2seq(bf))*/
def flatMap[S, That](f: T => GenTraversableOnce[S])(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) {
tasksupport.executeAndWaitResult(new FlatMap[S, That](f, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult { _.resultWithTaskSupport })
} else setTaskSupport(seq.flatMap(f)(bf2seq(bf)), tasksupport)
/*bf ifParallel { pbf =>
tasksupport.executeAndWaitResult(new FlatMap[S, That](f, pbf, splitter) mapResult { _.result })
} otherwise seq.flatMap(f)(bf2seq(bf))*/
/** Tests whether a predicate holds for all elements of this $coll.
*
* $abortsignalling
*
* @param p a predicate used to test elements
* @return true if `p` holds for all elements, false otherwise
*/
def forall(@deprecatedName('pred) p: T => Boolean): Boolean = {
tasksupport.executeAndWaitResult(new Forall(p, splitter assign new DefaultSignalling with VolatileAbort))
}
/** Tests whether a predicate holds for some element of this $coll.
*
* $abortsignalling
*
* @param p a predicate used to test elements
* @return true if `p` holds for some element, false otherwise
*/
def exists(@deprecatedName('pred) p: T => Boolean): Boolean = {
tasksupport.executeAndWaitResult(new Exists(p, splitter assign new DefaultSignalling with VolatileAbort))
}
/** Finds some element in the collection for which the predicate holds, if such
* an element exists. The element may not necessarily be the first such element
* in the iteration order.
*
* If there are multiple elements obeying the predicate, the choice is nondeterministic.
*
* $abortsignalling
*
* @param p predicate used to test the elements
* @return an option value with the element if such an element exists, or `None` otherwise
*/
def find(@deprecatedName('pred) p: T => Boolean): Option[T] = {
tasksupport.executeAndWaitResult(new Find(p, splitter assign new DefaultSignalling with VolatileAbort))
}
/** Creates a combiner factory. Each combiner factory instance is used
* once per invocation of a parallel transformer method for a single
* collection.
*
* The default combiner factory creates a new combiner every time it
* is requested, unless the combiner is thread-safe as indicated by its
* `canBeShared` method. In this case, the method returns a factory which
* returns the same combiner each time. This is typically done for
* concurrent parallel collections, the combiners of which allow
* thread safe access.
*/
protected[this] def combinerFactory = {
val combiner = newCombiner
combiner.combinerTaskSupport = tasksupport
if (combiner.canBeShared) new CombinerFactory[T, Repr] {
val shared = combiner
def apply() = shared
def doesShareCombiners = true
} else new CombinerFactory[T, Repr] {
def apply() = newCombiner
def doesShareCombiners = false
}
}
protected[this] def combinerFactory[S, That](cbf: () => Combiner[S, That]) = {
val combiner = cbf()
combiner.combinerTaskSupport = tasksupport
if (combiner.canBeShared) new CombinerFactory[S, That] {
val shared = combiner
def apply() = shared
def doesShareCombiners = true
} else new CombinerFactory[S, That] {
def apply() = cbf()
def doesShareCombiners = false
}
}
def withFilter(pred: T => Boolean): Repr = filter(pred)
def filter(pred: T => Boolean): Repr = {
tasksupport.executeAndWaitResult(new Filter(pred, combinerFactory, splitter) mapResult { _.resultWithTaskSupport })
}
def filterNot(pred: T => Boolean): Repr = {
tasksupport.executeAndWaitResult(new FilterNot(pred, combinerFactory, splitter) mapResult { _.resultWithTaskSupport })
}
def ++[U >: T, That](that: GenTraversableOnce[U])(implicit bf: CanBuildFrom[Repr, U, That]): That = {
if (that.isParallel && bf.isParallel) {
// println("case both are parallel")
val other = that.asParIterable
val pbf = bf.asParallel
val cfactory = combinerFactory(() => pbf(repr))
val copythis = new Copy(cfactory, splitter)
val copythat = wrap {
val othtask = new other.Copy(cfactory, other.splitter)
tasksupport.executeAndWaitResult(othtask)
}
val task = (copythis parallel copythat) { _ combine _ } mapResult {
_.resultWithTaskSupport
}
tasksupport.executeAndWaitResult(task)
} else if (bf(repr).isCombiner) {
// println("case parallel builder, `that` not parallel")
val copythis = new Copy(combinerFactory(() => bf(repr).asCombiner), splitter)
val copythat = wrap {
val cb = bf(repr).asCombiner
for (elem <- that.seq) cb += elem
cb
}
tasksupport.executeAndWaitResult((copythis parallel copythat) { _ combine _ } mapResult { _.resultWithTaskSupport })
} else {
// println("case not a parallel builder")
val b = bf(repr)
this.splitter.copy2builder[U, That, Builder[U, That]](b)
for (elem <- that.seq) b += elem
setTaskSupport(b.result(), tasksupport)
}
}
def partition(pred: T => Boolean): (Repr, Repr) = {
tasksupport.executeAndWaitResult(
new Partition(pred, combinerFactory, combinerFactory, splitter) mapResult {
p => (p._1.resultWithTaskSupport, p._2.resultWithTaskSupport)
}
)
}
def groupBy[K](f: T => K): immutable.ParMap[K, Repr] = {
val r = tasksupport.executeAndWaitResult(new GroupBy(f, () => HashMapCombiner[K, T], splitter) mapResult {
rcb => rcb.groupByKey(() => combinerFactory())
})
setTaskSupport(r, tasksupport)
}
def take(n: Int): Repr = {
val actualn = if (size > n) n else size
if (actualn < MIN_FOR_COPY) take_sequential(actualn)
else tasksupport.executeAndWaitResult(new Take(actualn, combinerFactory, splitter) mapResult {
_.resultWithTaskSupport
})
}
private def take_sequential(n: Int) = {
val cb = newCombiner
cb.sizeHint(n)
val it = splitter
var left = n
while (left > 0) {
cb += it.next
left -= 1
}
cb.resultWithTaskSupport
}
def drop(n: Int): Repr = {
val actualn = if (size > n) n else size
if ((size - actualn) < MIN_FOR_COPY) drop_sequential(actualn)
else tasksupport.executeAndWaitResult(new Drop(actualn, combinerFactory, splitter) mapResult { _.resultWithTaskSupport })
}
private def drop_sequential(n: Int) = {
val it = splitter drop n
val cb = newCombiner
cb.sizeHint(size - n)
while (it.hasNext) cb += it.next
cb.resultWithTaskSupport
}
override def slice(unc_from: Int, unc_until: Int): Repr = {
val from = unc_from min size max 0
val until = unc_until min size max from
if ((until - from) <= MIN_FOR_COPY) slice_sequential(from, until)
else tasksupport.executeAndWaitResult(new Slice(from, until, combinerFactory, splitter) mapResult { _.resultWithTaskSupport })
}
private def slice_sequential(from: Int, until: Int): Repr = {
val cb = newCombiner
var left = until - from
val it = splitter drop from
while (left > 0) {
cb += it.next
left -= 1
}
cb.resultWithTaskSupport
}
def splitAt(n: Int): (Repr, Repr) = {
tasksupport.executeAndWaitResult(
new SplitAt(n, combinerFactory, combinerFactory, splitter) mapResult {
p => (p._1.resultWithTaskSupport, p._2.resultWithTaskSupport)
}
)
}
/** Computes a prefix scan of the elements of the collection.
*
* Note: The neutral element `z` may be applied more than once.
*
* @tparam U element type of the resulting collection
* @tparam That type of the resulting collection
* @param z neutral element for the operator `op`
* @param op the associative operator for the scan
* @param bf $bfinfo
* @return a collection containing the prefix scan of the elements in the original collection
*
* @usecase def scan(z: T)(op: (T, T) => T): $Coll[T]
* @inheritdoc
*
* @return a new $coll containing the prefix scan of the elements in this $coll
*/
def scan[U >: T, That](z: U)(op: (U, U) => U)(implicit bf: CanBuildFrom[Repr, U, That]): That = if (bf(repr).isCombiner) {
if (tasksupport.parallelismLevel > 1) {
if (size > 0) tasksupport.executeAndWaitResult(new CreateScanTree(0, size, z, op, splitter) mapResult {
tree => tasksupport.executeAndWaitResult(new FromScanTree(tree, z, op, combinerFactory(() => bf(repr).asCombiner)) mapResult {
cb => cb.resultWithTaskSupport
})
}) else setTaskSupport((bf(repr) += z).result(), tasksupport)
} else setTaskSupport(seq.scan(z)(op)(bf2seq(bf)), tasksupport)
} else setTaskSupport(seq.scan(z)(op)(bf2seq(bf)), tasksupport)
def scanLeft[S, That](z: S)(op: (S, T) => S)(implicit bf: CanBuildFrom[Repr, S, That]) = setTaskSupport(seq.scanLeft(z)(op)(bf2seq(bf)), tasksupport)
def scanRight[S, That](z: S)(op: (T, S) => S)(implicit bf: CanBuildFrom[Repr, S, That]) = setTaskSupport(seq.scanRight(z)(op)(bf2seq(bf)), tasksupport)
/** Takes the longest prefix of elements that satisfy the predicate.
*
* $indexsignalling
* The index flag is initially set to maximum integer value.
*
* @param pred the predicate used to test the elements
* @return the longest prefix of this $coll of elements that satisfy the predicate `pred`
*/
def takeWhile(pred: T => Boolean): Repr = {
val cbf = combinerFactory
if (cbf.doesShareCombiners) {
val parseqspan = toSeq.takeWhile(pred)
tasksupport.executeAndWaitResult(new Copy(combinerFactory, parseqspan.splitter) mapResult {
_.resultWithTaskSupport
})
} else {
val cntx = new DefaultSignalling with AtomicIndexFlag
cntx.setIndexFlag(Int.MaxValue)
tasksupport.executeAndWaitResult(new TakeWhile(0, pred, combinerFactory, splitter assign cntx) mapResult {
_._1.resultWithTaskSupport
})
}
}
/** Splits this $coll into a prefix/suffix pair according to a predicate.
*
* $indexsignalling
* The index flag is initially set to maximum integer value.
*
* @param pred the predicate used to test the elements
* @return a pair consisting of the longest prefix of the collection for which all
* the elements satisfy `pred`, and the rest of the collection
*/
def span(pred: T => Boolean): (Repr, Repr) = {
val cbf = combinerFactory
if (cbf.doesShareCombiners) {
val (xs, ys) = toSeq.span(pred)
val copyxs = new Copy(combinerFactory, xs.splitter) mapResult { _.resultWithTaskSupport }
val copyys = new Copy(combinerFactory, ys.splitter) mapResult { _.resultWithTaskSupport }
val copyall = (copyxs parallel copyys) {
(xr, yr) => (xr, yr)
}
tasksupport.executeAndWaitResult(copyall)
} else {
val cntx = new DefaultSignalling with AtomicIndexFlag
cntx.setIndexFlag(Int.MaxValue)
tasksupport.executeAndWaitResult(new Span(0, pred, combinerFactory, combinerFactory, splitter assign cntx) mapResult {
p => (p._1.resultWithTaskSupport, p._2.resultWithTaskSupport)
})
}
}
/** Drops all elements in the longest prefix of elements that satisfy the predicate,
* and returns a collection composed of the remaining elements.
*
* $indexsignalling
* The index flag is initially set to maximum integer value.
*
* @param pred the predicate used to test the elements
* @return a collection composed of all the elements after the longest prefix of elements
* in this $coll that satisfy the predicate `pred`
*/
def dropWhile(pred: T => Boolean): Repr = {
val cntx = new DefaultSignalling with AtomicIndexFlag
cntx.setIndexFlag(Int.MaxValue)
tasksupport.executeAndWaitResult(
new Span(0, pred, combinerFactory, combinerFactory, splitter assign cntx) mapResult {
_._2.resultWithTaskSupport
}
)
}
def copyToArray[U >: T](xs: Array[U]) = copyToArray(xs, 0)
def copyToArray[U >: T](xs: Array[U], start: Int) = copyToArray(xs, start, xs.length - start)
def copyToArray[U >: T](xs: Array[U], start: Int, len: Int) = if (len > 0) {
tasksupport.executeAndWaitResult(new CopyToArray(start, len, xs, splitter))
}
def sameElements[U >: T](that: GenIterable[U]) = seq.sameElements(that)
def zip[U >: T, S, That](that: GenIterable[S])(implicit bf: CanBuildFrom[Repr, (U, S), That]): That = if (bf(repr).isCombiner && that.isParSeq) {
val thatseq = that.asParSeq
tasksupport.executeAndWaitResult(new Zip(combinerFactory(() => bf(repr).asCombiner), splitter, thatseq.splitter) mapResult { _.resultWithTaskSupport })
} else setTaskSupport(seq.zip(that)(bf2seq(bf)), tasksupport)
def zipWithIndex[U >: T, That](implicit bf: CanBuildFrom[Repr, (U, Int), That]): That = this zip immutable.ParRange(0, size, 1, inclusive = false)
def zipAll[S, U >: T, That](that: GenIterable[S], thisElem: U, thatElem: S)(implicit bf: CanBuildFrom[Repr, (U, S), That]): That = if (bf(repr).isCombiner && that.isParSeq) {
val thatseq = that.asParSeq
tasksupport.executeAndWaitResult(
new ZipAll(size max thatseq.length, thisElem, thatElem, combinerFactory(() => bf(repr).asCombiner), splitter, thatseq.splitter) mapResult {
_.resultWithTaskSupport
}
)
} else setTaskSupport(seq.zipAll(that, thisElem, thatElem)(bf2seq(bf)), tasksupport)
protected def toParCollection[U >: T, That](cbf: () => Combiner[U, That]): That = {
tasksupport.executeAndWaitResult(new ToParCollection(combinerFactory(cbf), splitter) mapResult { _.resultWithTaskSupport })
}
protected def toParMap[K, V, That](cbf: () => Combiner[(K, V), That])(implicit ev: T <:< (K, V)): That = {
tasksupport.executeAndWaitResult(new ToParMap(combinerFactory(cbf), splitter)(ev) mapResult { _.resultWithTaskSupport })
}
@deprecated("Use .seq.view instead", "2.11.0")
def view = seq.view
override def toArray[U >: T: ClassTag]: Array[U] = {
val arr = new Array[U](size)
copyToArray(arr)
arr
}
override def toList: List[T] = seq.toList
override def toIndexedSeq: scala.collection.immutable.IndexedSeq[T] = seq.toIndexedSeq
override def toStream: Stream[T] = seq.toStream
override def toIterator: Iterator[T] = splitter
// the methods below are overridden
override def toBuffer[U >: T]: scala.collection.mutable.Buffer[U] = seq.toBuffer // have additional, parallel buffers?
override def toTraversable: GenTraversable[T] = this.asInstanceOf[GenTraversable[T]]
override def toIterable: ParIterable[T] = this.asInstanceOf[ParIterable[T]]
override def toSeq: ParSeq[T] = toParCollection[T, ParSeq[T]](() => ParSeq.newCombiner[T])
override def toSet[U >: T]: immutable.ParSet[U] = toParCollection[U, immutable.ParSet[U]](() => immutable.ParSet.newCombiner[U])
override def toMap[K, V](implicit ev: T <:< (K, V)): immutable.ParMap[K, V] = toParMap[K, V, immutable.ParMap[K, V]](() => immutable.ParMap.newCombiner[K, V])
override def toVector: Vector[T] = to[Vector]
override def to[Col[_]](implicit cbf: CanBuildFrom[Nothing, T, Col[T @uncheckedVariance]]): Col[T @uncheckedVariance] = if (cbf().isCombiner) {
toParCollection[T, Col[T]](() => cbf().asCombiner)
} else seq.to(cbf)
/* tasks */
protected trait StrictSplitterCheckTask[R, Tp] extends Task[R, Tp] {
def requiresStrictSplitters = false
if (requiresStrictSplitters && !isStrictSplitterCollection)
throw new UnsupportedOperationException("This collection does not provide strict splitters.")
}
/** Standard accessor task that iterates over the elements of the collection.
*
* @tparam R type of the result of this method (`R` for result).
* @tparam Tp the representation type of the task at hand.
*/
protected trait Accessor[R, Tp]
extends StrictSplitterCheckTask[R, Tp] {
protected[this] val pit: IterableSplitter[T]
protected[this] def newSubtask(p: IterableSplitter[T]): Accessor[R, Tp]
def shouldSplitFurther = pit.shouldSplitFurther(self.repr, tasksupport.parallelismLevel)
def split = pit.splitWithSignalling.map(newSubtask(_)) // default split procedure
private[parallel] override def signalAbort = pit.abort()
override def toString = this.getClass.getSimpleName + "(" + pit.toString + ")(" + result + ")(supername: " + super.toString + ")"
}
protected[this] trait NonDivisibleTask[R, Tp] extends StrictSplitterCheckTask[R, Tp] {
def shouldSplitFurther = false
def split = throw new UnsupportedOperationException("Does not split.")
}
protected[this] trait NonDivisible[R] extends NonDivisibleTask[R, NonDivisible[R]]
protected[this] abstract class Composite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]]
(val ft: First, val st: Second)
extends NonDivisibleTask[R, Composite[FR, SR, R, First, Second]] {
def combineResults(fr: FR, sr: SR): R
@volatile var result: R = null.asInstanceOf[R]
private[parallel] override def signalAbort() {
ft.signalAbort()
st.signalAbort()
}
protected def mergeSubtasks() {
ft mergeThrowables st
if (throwable eq null) result = combineResults(ft.result, st.result)
}
override def requiresStrictSplitters = ft.requiresStrictSplitters || st.requiresStrictSplitters
}
/** Sequentially performs one task after another. */
protected[this] abstract class SeqComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]]
(f: First, s: Second)
extends Composite[FR, SR, R, First, Second](f, s) {
def leaf(prevr: Option[R]) = {
tasksupport.executeAndWaitResult(ft) : Any
tasksupport.executeAndWaitResult(st) : Any
mergeSubtasks()
}
}
/** Performs two tasks in parallel, and waits for both to finish. */
protected[this] abstract class ParComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]]
(f: First, s: Second)
extends Composite[FR, SR, R, First, Second](f, s) {
def leaf(prevr: Option[R]) = {
val ftfuture: () => Any = tasksupport.execute(ft)
tasksupport.executeAndWaitResult(st) : Any
ftfuture()
mergeSubtasks()
}
}
protected[this] abstract class ResultMapping[R, Tp, R1](val inner: StrictSplitterCheckTask[R, Tp])
extends NonDivisibleTask[R1, ResultMapping[R, Tp, R1]] {
@volatile var result: R1 = null.asInstanceOf[R1]
def map(r: R): R1
def leaf(prevr: Option[R1]) = {
val initialResult = tasksupport.executeAndWaitResult(inner)
result = map(initialResult)
}
private[parallel] override def signalAbort() {
inner.signalAbort()
}
override def requiresStrictSplitters = inner.requiresStrictSplitters
}
protected trait Transformer[R, Tp] extends Accessor[R, Tp]
protected[this] class Foreach[S](op: T => S, protected[this] val pit: IterableSplitter[T])
extends Accessor[Unit, Foreach[S]] {
@volatile var result: Unit = ()
def leaf(prevr: Option[Unit]) = pit.foreach(op)
protected[this] def newSubtask(p: IterableSplitter[T]) = new Foreach[S](op, p)
}
protected[this] class Count(pred: T => Boolean, protected[this] val pit: IterableSplitter[T])
extends Accessor[Int, Count] {
// val pittxt = pit.toString
@volatile var result: Int = 0
def leaf(prevr: Option[Int]) = result = pit.count(pred)
protected[this] def newSubtask(p: IterableSplitter[T]) = new Count(pred, p)
override def merge(that: Count) = result = result + that.result
// override def toString = "CountTask(" + pittxt + ")"
}
protected[this] class Reduce[U >: T](op: (U, U) => U, protected[this] val pit: IterableSplitter[T])
extends Accessor[Option[U], Reduce[U]] {
@volatile var result: Option[U] = None
def leaf(prevr: Option[Option[U]]) = if (pit.remaining > 0) result = Some(pit.reduce(op))
protected[this] def newSubtask(p: IterableSplitter[T]) = new Reduce(op, p)
override def merge(that: Reduce[U]) =
if (this.result == None) result = that.result
else if (that.result != None) result = Some(op(result.get, that.result.get))
override def requiresStrictSplitters = true
}
protected[this] class Fold[U >: T](z: U, op: (U, U) => U, protected[this] val pit: IterableSplitter[T])
extends Accessor[U, Fold[U]] {
@volatile var result: U = null.asInstanceOf[U]
def leaf(prevr: Option[U]) = result = pit.fold(z)(op)
protected[this] def newSubtask(p: IterableSplitter[T]) = new Fold(z, op, p)
override def merge(that: Fold[U]) = result = op(result, that.result)
}
protected[this] class Aggregate[S](z: () => S, seqop: (S, T) => S, combop: (S, S) => S, protected[this] val pit: IterableSplitter[T])
extends Accessor[S, Aggregate[S]] {
@volatile var result: S = null.asInstanceOf[S]
def leaf(prevr: Option[S]) = result = pit.foldLeft(z())(seqop)
protected[this] def newSubtask(p: IterableSplitter[T]) = new Aggregate(z, seqop, combop, p)
override def merge(that: Aggregate[S]) = result = combop(result, that.result)
}
protected[this] class Sum[U >: T](num: Numeric[U], protected[this] val pit: IterableSplitter[T])
extends Accessor[U, Sum[U]] {
@volatile var result: U = null.asInstanceOf[U]
def leaf(prevr: Option[U]) = result = pit.sum(num)
protected[this] def newSubtask(p: IterableSplitter[T]) = new Sum(num, p)
override def merge(that: Sum[U]) = result = num.plus(result, that.result)
}
protected[this] class Product[U >: T](num: Numeric[U], protected[this] val pit: IterableSplitter[T])
extends Accessor[U, Product[U]] {
@volatile var result: U = null.asInstanceOf[U]
def leaf(prevr: Option[U]) = result = pit.product(num)
protected[this] def newSubtask(p: IterableSplitter[T]) = new Product(num, p)
override def merge(that: Product[U]) = result = num.times(result, that.result)
}
protected[this] class Min[U >: T](ord: Ordering[U], protected[this] val pit: IterableSplitter[T])
extends Accessor[Option[U], Min[U]] {
@volatile var result: Option[U] = None
def leaf(prevr: Option[Option[U]]) = if (pit.remaining > 0) result = Some(pit.min(ord))
protected[this] def newSubtask(p: IterableSplitter[T]) = new Min(ord, p)
override def merge(that: Min[U]) =
if (this.result == None) result = that.result
else if (that.result != None) result = if (ord.lteq(result.get, that.result.get)) result else that.result
override def requiresStrictSplitters = true
}
protected[this] class Max[U >: T](ord: Ordering[U], protected[this] val pit: IterableSplitter[T])
extends Accessor[Option[U], Max[U]] {
@volatile var result: Option[U] = None
def leaf(prevr: Option[Option[U]]) = if (pit.remaining > 0) result = Some(pit.max(ord))
protected[this] def newSubtask(p: IterableSplitter[T]) = new Max(ord, p)
override def merge(that: Max[U]) =
if (this.result == None) result = that.result
else if (that.result != None) result = if (ord.gteq(result.get, that.result.get)) result else that.result
override def requiresStrictSplitters = true
}
protected[this] class Map[S, That](f: T => S, cbf: CombinerFactory[S, That], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[S, That], Map[S, That]] {
@volatile var result: Combiner[S, That] = null
def leaf(prev: Option[Combiner[S, That]]) = result = pit.map2combiner(f, reuse(prev, cbf()))
protected[this] def newSubtask(p: IterableSplitter[T]) = new Map(f, cbf, p)
override def merge(that: Map[S, That]) = result = result combine that.result
}
protected[this] class Collect[S, That]
(pf: PartialFunction[T, S], pbf: CombinerFactory[S, That], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[S, That], Collect[S, That]] {
@volatile var result: Combiner[S, That] = null
def leaf(prev: Option[Combiner[S, That]]) = result = pit.collect2combiner[S, That](pf, pbf())
protected[this] def newSubtask(p: IterableSplitter[T]) = new Collect(pf, pbf, p)
override def merge(that: Collect[S, That]) = result = result combine that.result
}
protected[this] class FlatMap[S, That]
(f: T => GenTraversableOnce[S], pbf: CombinerFactory[S, That], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[S, That], FlatMap[S, That]] {
@volatile var result: Combiner[S, That] = null
def leaf(prev: Option[Combiner[S, That]]) = result = pit.flatmap2combiner(f, pbf())
protected[this] def newSubtask(p: IterableSplitter[T]) = new FlatMap(f, pbf, p)
override def merge(that: FlatMap[S, That]) = {
//debuglog("merging " + result + " and " + that.result)
result = result combine that.result
//debuglog("merged into " + result)
}
}
protected[this] class Forall(pred: T => Boolean, protected[this] val pit: IterableSplitter[T])
extends Accessor[Boolean, Forall] {
@volatile var result: Boolean = true
def leaf(prev: Option[Boolean]) = { if (!pit.isAborted) result = pit.forall(pred); if (result == false) pit.abort() }
protected[this] def newSubtask(p: IterableSplitter[T]) = new Forall(pred, p)
override def merge(that: Forall) = result = result && that.result
}
protected[this] class Exists(pred: T => Boolean, protected[this] val pit: IterableSplitter[T])
extends Accessor[Boolean, Exists] {
@volatile var result: Boolean = false
def leaf(prev: Option[Boolean]) = { if (!pit.isAborted) result = pit.exists(pred); if (result == true) pit.abort() }
protected[this] def newSubtask(p: IterableSplitter[T]) = new Exists(pred, p)
override def merge(that: Exists) = result = result || that.result
}
protected[this] class Find[U >: T](pred: T => Boolean, protected[this] val pit: IterableSplitter[T])
extends Accessor[Option[U], Find[U]] {
@volatile var result: Option[U] = None
def leaf(prev: Option[Option[U]]) = { if (!pit.isAborted) result = pit.find(pred); if (result != None) pit.abort() }
protected[this] def newSubtask(p: IterableSplitter[T]) = new Find(pred, p)
override def merge(that: Find[U]) = if (this.result == None) result = that.result
}
protected[this] class Filter[U >: T, This >: Repr](pred: T => Boolean, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, This], Filter[U, This]] {
@volatile var result: Combiner[U, This] = null
def leaf(prev: Option[Combiner[U, This]]) = {
result = pit.filter2combiner(pred, reuse(prev, cbf()))
}
protected[this] def newSubtask(p: IterableSplitter[T]) = new Filter(pred, cbf, p)
override def merge(that: Filter[U, This]) = result = result combine that.result
}
protected[this] class FilterNot[U >: T, This >: Repr](pred: T => Boolean, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, This], FilterNot[U, This]] {
@volatile var result: Combiner[U, This] = null
def leaf(prev: Option[Combiner[U, This]]) = {
result = pit.filterNot2combiner(pred, reuse(prev, cbf()))
}
protected[this] def newSubtask(p: IterableSplitter[T]) = new FilterNot(pred, cbf, p)
override def merge(that: FilterNot[U, This]) = result = result combine that.result
}
protected class Copy[U >: T, That](cfactory: CombinerFactory[U, That], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, That], Copy[U, That]] {
@volatile var result: Combiner[U, That] = null
def leaf(prev: Option[Combiner[U, That]]) = result = pit.copy2builder[U, That, Combiner[U, That]](reuse(prev, cfactory()))
protected[this] def newSubtask(p: IterableSplitter[T]) = new Copy[U, That](cfactory, p)
override def merge(that: Copy[U, That]) = result = result combine that.result
}
protected[this] class Partition[U >: T, This >: Repr]
(pred: T => Boolean, cbfTrue: CombinerFactory[U, This], cbfFalse: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[(Combiner[U, This], Combiner[U, This]), Partition[U, This]] {
@volatile var result: (Combiner[U, This], Combiner[U, This]) = null
def leaf(prev: Option[(Combiner[U, This], Combiner[U, This])]) = result = pit.partition2combiners(pred, reuse(prev.map(_._1), cbfTrue()), reuse(prev.map(_._2), cbfFalse()))
protected[this] def newSubtask(p: IterableSplitter[T]) = new Partition(pred, cbfTrue, cbfFalse, p)
override def merge(that: Partition[U, This]) = result = (result._1 combine that.result._1, result._2 combine that.result._2)
}
protected[this] class GroupBy[K, U >: T](
f: U => K,
mcf: () => HashMapCombiner[K, U],
protected[this] val pit: IterableSplitter[T]
) extends Transformer[HashMapCombiner[K, U], GroupBy[K, U]] {
@volatile var result: Result = null
final def leaf(prev: Option[Result]) = {
// note: HashMapCombiner doesn't merge same keys until evaluation
val cb = mcf()
while (pit.hasNext) {
val elem = pit.next()
cb += f(elem) -> elem
}
result = cb
}
protected[this] def newSubtask(p: IterableSplitter[T]) = new GroupBy(f, mcf, p)
override def merge(that: GroupBy[K, U]) = {
// note: this works because we know that a HashMapCombiner doesn't merge same keys until evaluation
// --> we know we're not dropping any mappings
result = (result combine that.result).asInstanceOf[HashMapCombiner[K, U]]
}
}
protected[this] class Take[U >: T, This >: Repr]
(n: Int, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, This], Take[U, This]] {
@volatile var result: Combiner[U, This] = null
def leaf(prev: Option[Combiner[U, This]]) = {
result = pit.take2combiner(n, reuse(prev, cbf()))
}
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
val sizes = pits.scanLeft(0)(_ + _.remaining)
for ((p, untilp) <- pits zip sizes; if untilp <= n) yield {
if (untilp + p.remaining < n) new Take(p.remaining, cbf, p)
else new Take(n - untilp, cbf, p)
}
}
override def merge(that: Take[U, This]) = result = result combine that.result
override def requiresStrictSplitters = true
}
protected[this] class Drop[U >: T, This >: Repr]
(n: Int, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, This], Drop[U, This]] {
@volatile var result: Combiner[U, This] = null
def leaf(prev: Option[Combiner[U, This]]) = result = pit.drop2combiner(n, reuse(prev, cbf()))
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
val sizes = pits.scanLeft(0)(_ + _.remaining)
for ((p, withp) <- pits zip sizes.tail; if withp >= n) yield {
if (withp - p.remaining > n) new Drop(0, cbf, p)
else new Drop(n - withp + p.remaining, cbf, p)
}
}
override def merge(that: Drop[U, This]) = result = result combine that.result
override def requiresStrictSplitters = true
}
protected[this] class Slice[U >: T, This >: Repr]
(from: Int, until: Int, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, This], Slice[U, This]] {
@volatile var result: Combiner[U, This] = null
def leaf(prev: Option[Combiner[U, This]]) = result = pit.slice2combiner(from, until, reuse(prev, cbf()))
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
val sizes = pits.scanLeft(0)(_ + _.remaining)
for ((p, untilp) <- pits zip sizes; if untilp + p.remaining >= from || untilp <= until) yield {
val f = (from max untilp) - untilp
val u = (until min (untilp + p.remaining)) - untilp
new Slice(f, u, cbf, p)
}
}
override def merge(that: Slice[U, This]) = result = result combine that.result
override def requiresStrictSplitters = true
}
protected[this] class SplitAt[U >: T, This >: Repr]
(at: Int, cbfBefore: CombinerFactory[U, This], cbfAfter: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[(Combiner[U, This], Combiner[U, This]), SplitAt[U, This]] {
@volatile var result: (Combiner[U, This], Combiner[U, This]) = null
def leaf(prev: Option[(Combiner[U, This], Combiner[U, This])]) = result = pit.splitAt2combiners(at, reuse(prev.map(_._1), cbfBefore()), reuse(prev.map(_._2), cbfAfter()))
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
val sizes = pits.scanLeft(0)(_ + _.remaining)
for ((p, untilp) <- pits zip sizes) yield new SplitAt((at max untilp min (untilp + p.remaining)) - untilp, cbfBefore, cbfAfter, p)
}
override def merge(that: SplitAt[U, This]) = result = (result._1 combine that.result._1, result._2 combine that.result._2)
override def requiresStrictSplitters = true
}
protected[this] class TakeWhile[U >: T, This >: Repr]
(pos: Int, pred: T => Boolean, cbf: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[(Combiner[U, This], Boolean), TakeWhile[U, This]] {
@volatile var result: (Combiner[U, This], Boolean) = null
def leaf(prev: Option[(Combiner[U, This], Boolean)]) = if (pos < pit.indexFlag) {
result = pit.takeWhile2combiner(pred, reuse(prev.map(_._1), cbf()))
if (!result._2) pit.setIndexFlagIfLesser(pos)
} else result = (reuse(prev.map(_._1), cbf()), false)
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining)) yield new TakeWhile(pos + untilp, pred, cbf, p)
}
override def merge(that: TakeWhile[U, This]) = if (result._2) {
result = (result._1 combine that.result._1, that.result._2)
}
override def requiresStrictSplitters = true
}
protected[this] class Span[U >: T, This >: Repr]
(pos: Int, pred: T => Boolean, cbfBefore: CombinerFactory[U, This], cbfAfter: CombinerFactory[U, This], protected[this] val pit: IterableSplitter[T])
extends Transformer[(Combiner[U, This], Combiner[U, This]), Span[U, This]] {
@volatile var result: (Combiner[U, This], Combiner[U, This]) = null
def leaf(prev: Option[(Combiner[U, This], Combiner[U, This])]) = if (pos < pit.indexFlag) {
// val lst = pit.toList
// val pa = mutable.ParArray(lst: _*)
// val str = "At leaf we will iterate: " + pa.splitter.toList
result = pit.span2combiners(pred, cbfBefore(), cbfAfter()) // do NOT reuse old combiners here, lest ye be surprised
// println("\nAt leaf result is: " + result)
if (result._2.size > 0) pit.setIndexFlagIfLesser(pos)
} else {
result = (reuse(prev.map(_._2), cbfBefore()), pit.copy2builder[U, This, Combiner[U, This]](reuse(prev.map(_._2), cbfAfter())))
}
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining)) yield new Span(pos + untilp, pred, cbfBefore, cbfAfter, p)
}
override def merge(that: Span[U, This]) = result = if (result._2.size == 0) {
(result._1 combine that.result._1, that.result._2)
} else {
(result._1, result._2 combine that.result._1 combine that.result._2)
}
override def requiresStrictSplitters = true
}
protected[this] class Zip[U >: T, S, That](pbf: CombinerFactory[(U, S), That], protected[this] val pit: IterableSplitter[T], val othpit: SeqSplitter[S])
extends Transformer[Combiner[(U, S), That], Zip[U, S, That]] {
@volatile var result: Result = null
def leaf(prev: Option[Result]) = result = pit.zip2combiner[U, S, That](othpit, pbf())
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
val sizes = pits.map(_.remaining)
val opits = othpit.psplitWithSignalling(sizes: _*)
(pits zip opits) map { p => new Zip(pbf, p._1, p._2) }
}
override def merge(that: Zip[U, S, That]) = result = result combine that.result
override def requiresStrictSplitters = true
}
protected[this] class ZipAll[U >: T, S, That]
(len: Int, thiselem: U, thatelem: S, pbf: CombinerFactory[(U, S), That], protected[this] val pit: IterableSplitter[T], val othpit: SeqSplitter[S])
extends Transformer[Combiner[(U, S), That], ZipAll[U, S, That]] {
@volatile var result: Result = null
def leaf(prev: Option[Result]) = result = pit.zipAll2combiner[U, S, That](othpit, thiselem, thatelem, pbf())
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = if (pit.remaining <= len) {
val pits = pit.splitWithSignalling
val sizes = pits.map(_.remaining)
val opits = othpit.psplitWithSignalling(sizes: _*)
((pits zip opits) zip sizes) map { t => new ZipAll(t._2, thiselem, thatelem, pbf, t._1._1, t._1._2) }
} else {
val opits = othpit.psplitWithSignalling(pit.remaining)
val diff = len - pit.remaining
Seq(
new ZipAll(pit.remaining, thiselem, thatelem, pbf, pit, opits(0)), // nothing wrong will happen with the cast below - elem T is never accessed
new ZipAll(diff, thiselem, thatelem, pbf, immutable.repetition(thiselem, diff).splitter.asInstanceOf[IterableSplitter[T]], opits(1))
)
}
override def merge(that: ZipAll[U, S, That]) = result = result combine that.result
override def requiresStrictSplitters = true
}
protected[this] class CopyToArray[U >: T, This >: Repr](from: Int, len: Int, array: Array[U], protected[this] val pit: IterableSplitter[T])
extends Accessor[Unit, CopyToArray[U, This]] {
@volatile var result: Unit = ()
def leaf(prev: Option[Unit]) = pit.copyToArray(array, from, len)
protected[this] def newSubtask(p: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining); if untilp < len) yield {
val plen = p.remaining min (len - untilp)
new CopyToArray[U, This](from + untilp, plen, array, p)
}
}
override def requiresStrictSplitters = true
}
protected[this] class ToParCollection[U >: T, That](cbf: CombinerFactory[U, That], protected[this] val pit: IterableSplitter[T])
extends Transformer[Combiner[U, That], ToParCollection[U, That]] {
@volatile var result: Result = null
def leaf(prev: Option[Combiner[U, That]]) {
result = cbf()
while (pit.hasNext) result += pit.next
}
protected[this] def newSubtask(p: IterableSplitter[T]) = new ToParCollection[U, That](cbf, p)
override def merge(that: ToParCollection[U, That]) = result = result combine that.result
}
protected[this] class ToParMap[K, V, That](cbf: CombinerFactory[(K, V), That], protected[this] val pit: IterableSplitter[T])(implicit ev: T <:< (K, V))
extends Transformer[Combiner[(K, V), That], ToParMap[K, V, That]] {
@volatile var result: Result = null
def leaf(prev: Option[Combiner[(K, V), That]]) {
result = cbf()
while (pit.hasNext) result += pit.next
}
protected[this] def newSubtask(p: IterableSplitter[T]) = new ToParMap[K, V, That](cbf, p)(ev)
override def merge(that: ToParMap[K, V, That]) = result = result combine that.result
}
protected[this] class CreateScanTree[U >: T](from: Int, len: Int, z: U, op: (U, U) => U, protected[this] val pit: IterableSplitter[T])
extends Transformer[ScanTree[U], CreateScanTree[U]] {
@volatile var result: ScanTree[U] = null
def leaf(prev: Option[ScanTree[U]]) = if (pit.remaining > 0) {
val trees = ArrayBuffer[ScanTree[U]]()
var i = from
val until = from + len
val blocksize = scanBlockSize
while (i < until) {
trees += scanBlock(i, scala.math.min(blocksize, pit.remaining))
i += blocksize
}
// merge trees
result = mergeTrees(trees, 0, trees.length)
} else result = null // no elements to scan (merge will take care of `null`s)
private def scanBlock(from: Int, len: Int): ScanTree[U] = {
val pitdup = pit.dup
new ScanLeaf(pitdup, op, from, len, None, pit.reduceLeft(len, op))
}
private def mergeTrees(trees: ArrayBuffer[ScanTree[U]], from: Int, howmany: Int): ScanTree[U] = if (howmany > 1) {
val half = howmany / 2
ScanNode(mergeTrees(trees, from, half), mergeTrees(trees, from + half, howmany - half))
} else trees(from)
protected[this] def newSubtask(pit: IterableSplitter[T]) = throw new UnsupportedOperationException
override def split = {
val pits = pit.splitWithSignalling
for ((p, untilp) <- pits zip pits.scanLeft(from)(_ + _.remaining)) yield {
new CreateScanTree(untilp, p.remaining, z, op, p)
}
}
override def merge(that: CreateScanTree[U]) = if (this.result != null) {
if (that.result != null) result = ScanNode(result, that.result)
} else result = that.result
override def requiresStrictSplitters = true
}
protected[this] class FromScanTree[U >: T, That]
(tree: ScanTree[U], z: U, op: (U, U) => U, cbf: CombinerFactory[U, That])
extends StrictSplitterCheckTask[Combiner[U, That], FromScanTree[U, That]] {
@volatile var result: Combiner[U, That] = null
def leaf(prev: Option[Combiner[U, That]]) {
val cb = reuse(prev, cbf())
iterate(tree, cb)
result = cb
}
private def iterate(tree: ScanTree[U], cb: Combiner[U, That]): Unit = tree match {
case ScanNode(left, right) =>
iterate(left, cb)
iterate(right, cb)
case ScanLeaf(p, _, _, len, Some(prev), _) =>
p.scanToCombiner(len, prev.acc, op, cb)
case ScanLeaf(p, _, _, len, None, _) =>
cb += z
p.scanToCombiner(len, z, op, cb)
}
def split = tree match {
case ScanNode(left, right) => Seq(
new FromScanTree(left, z, op, cbf),
new FromScanTree(right, z, op, cbf)
)
case _ => throw new UnsupportedOperationException("Cannot be split further")
}
def shouldSplitFurther = tree match {
case ScanNode(_, _) => true
case ScanLeaf(_, _, _, _, _, _) => false
}
override def merge(that: FromScanTree[U, That]) = result = result combine that.result
}
/* scan tree */
protected[this] def scanBlockSize = (thresholdFromSize(size, tasksupport.parallelismLevel) / 2) max 1
protected[this] trait ScanTree[U >: T] {
def beginsAt: Int
def pushdown(v: U): Unit
def leftmost: ScanLeaf[U]
def rightmost: ScanLeaf[U]
def print(depth: Int = 0): Unit
}
protected[this] case class ScanNode[U >: T](left: ScanTree[U], right: ScanTree[U]) extends ScanTree[U] {
right.pushdown(left.rightmost.acc)
right.leftmost.prev = Some(left.rightmost)
val leftmost = left.leftmost
val rightmost = right.rightmost
def beginsAt = left.beginsAt
def pushdown(v: U) {
left.pushdown(v)
right.pushdown(v)
}
def print(depth: Int) {
println((" " * depth) + "ScanNode, begins at " + beginsAt)
left.print(depth + 1)
right.print(depth + 1)
}
}
protected[this] case class ScanLeaf[U >: T]
(pit: IterableSplitter[U], op: (U, U) => U, from: Int, len: Int, var prev: Option[ScanLeaf[U]], var acc: U)
extends ScanTree[U] {
def beginsAt = from
def pushdown(v: U) = {
acc = op(v, acc)
}
def leftmost = this
def rightmost = this
def print(depth: Int) = println((" " * depth) + this)
}
/* alias methods */
def /:[S](z: S)(op: (S, T) => S): S = foldLeft(z)(op)
def :\[S](z: S)(op: (T, S) => S): S = foldRight(z)(op)
/* debug information */
private[parallel] def debugInformation = "Parallel collection: " + this.getClass
private[parallel] def brokenInvariants = Seq[String]()
// private val dbbuff = ArrayBuffer[String]()
// def debugBuffer: ArrayBuffer[String] = dbbuff
def debugBuffer: ArrayBuffer[String] = null
private[parallel] def debugclear() = synchronized {
debugBuffer.clear()
}
private[parallel] def debuglog(s: String) = synchronized {
debugBuffer += s
}
import scala.collection.DebugUtils._
private[parallel] def printDebugBuffer() = println(buildString {
append =>
for (s <- debugBuffer) {
append(s)
}
})
}
Interested in Scala?
I send out weekly, personalized emails with articles and conference talks.
Subscribe now.